純粋・応用数学(含むガロア理論)4at MATH
純粋・応用数学(含むガロア理論)4
- 暇つぶし2ch822: ここでは, テンソル積を基底を用いて構成する. 命題 1.7 {v1, . . . , vn} を V の基底, {w1, . . . , wm} を W の基底とする. また, U0 :=Rmn とおき, ι : V × W → U0 を双線型写像とする. このとき, もし {ι(vi, wj )} が U0 の 基底ならば, (U0, ι) は V と W のテンソル積である. この命題の仮定をみたす ι が存在することは容易に分かるので, テンソル積が存在する ことが従う. 系 1.8 dim(V 〇x W) = dim V ・ dim W. とくに {v1, . . . , vn}, {w1, . . . , wm} をそれぞれ V , W の基底とすると, {vi 〇x wj} は V 〇x W の基底である. これでテンソル積の次元が分かった. 次は, 次元を用いた判定条件. 補題 1.9 ι′: V × W → U を双線型写像とする. このとき, もし以下が成り立つならば, (U, ι′) は V と W のテンソル積である: (1) dim U = dim V ・ dim W. (2) U は ι′(V × W) で生成される. 1.1.3 基底に依らない構成 ここで次を考える: Hom (V, W) := {F : V → W : 線型 }. このとき Hom (V, W) は自 然に線型空間であり, その次元は dim V ・ dim W と一致する. とくに, V*:= Hom (V, R) を V の 双対空間 と呼ぶ. 1.1.4 商線型空間を用いた構成 商線型空間を用いた構成については, 講義では触れないが, 原稿には載せておく. V0 を V 内の線型部分空間とする. つづく
次ページ続きを表示1を表示最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch