20/09/27 17:12:24.35 zL73gCM8.net
>>664の続き
次に、行列式のソフィスティケイトされた定義
行列M
(m11,m12)
(m21,m22)
の列ベクトルを
mv1(=m11e1 + m21e2)
mv2(=m12e1 + m22e2)
とあらわす
(e1,e2は基底)
このとき、行列式を外積mv1∧mv2として定義する
外積∧は以下の定義を満たす、とする
1.v∧w=-w∧v (反対称性)
2.au∧v=a(u∧v) u∧av=a(u∧v)
(u+v)∧w=u∧w+v∧w u∧(v+w)=u∧v+u∧w (多重線型性)
3.基底e1,e2について
e1∧e1=e2∧e2=0 e1∧e2=1 e2∧e1=-e1∧e2=-1
つまり
mv1∧mv2
=(m11e1 + m21e2)∧(m12e1 + m22e2)
=m11e1∧(m12e1 + m22e2)+m21e2∧(m12e1 + m22e2)
=m11e1∧m12e1+m11e1∧m22e2+m21e2∧m12e1+m21e2∧m22e2
=m11m21(e1∧e1)+m11m22(e1∧e2)+m21m12(e2∧e1)+m21m22(e2∧e2)
=m11m21*0+m11m22*1+m21m12*(-1)+m21m22*0
=m11m22-m21m12
ほら、出たw