20/09/01 06:57:07.39 pGoi0nQw.net
>>54 補足
>C∞の層? そんなの当面無視しとけ~!!w(^^;
秋月康夫先生が、下記1955年 科学基礎論研究に書いています
「C∞-多様体上のC∞-函数の全体についても層を
考えることができる.そこで'解析的な層'だとか,‘C∞の層'を考えることができるが,
C∞-理論は層を要しないでも得られるものであるに対し,複素解析的理論は層によって初めて明かになし得られたものである.」
と。用語は少し古い。また、層の定義も、古風だ。が、秋月康夫先生は、”科学基礎論研究”として、数理哲学を語っているのです
そこに、値打ちがあり、一読の価値があると思う
(参考)
URLリンク(www.jstage.jst.go.jp)
多様体の概念について(秋月康夫)科学基礎論研究January1955
(抜粋)
P62
大域化する場合においても,局所的に'ばらばら'に与
えた更に広い世界を構成し,自由に思考ができる場所を
こしらえてその中で接ぎ合わしていくといった立場を取
る.而してこれには寧ろ極度に拡張した抽象的体系を取
るのが却って見通しやすくするものである.この方面の
代表的概念としてはFiberbundleを挙げねばならない.
BがFiberbundleとは
略
P63
c∞-多様体M上ではc∞の函数は環F(M)を作る
が,複素解析多様体についてはかかる環は考えられない.
そこでR(M)の代りに,各点(のと(x)における解析
的要素f(x)(局所複素座標x1…xnによる整級数)との
組(X,f(X))の全体から成る集合(点(x)をもM上に
変えて)を取る.解析的な微分形式についても,また有
理型の微分形式(これは複素直線バンドル上の解析的微
分形式として)についても同様のものを取る.そしてか
かる体系に