純粋・応用数学(含むガロア理論)4at MATH
純粋・応用数学(含むガロア理論)4 - 暇つぶし2ch668:現代数学の系譜 雑談
20/09/24 10:43:07.99 2CuZB/b0.net
内積:二つのベクトルに対してある数(スカラー)を定める二項演算であるためスカラー積(スカラーせき、英: scalar product)ともいう。
多重線型写像:多重線型写像の終域が係数体(スカラー値)のときはとくに多重線型形式と言う。
 例えば、スカラー積は対称双線型形式であり、行列式は正方行列の列(あるいは行)ベクトルを引数と見れば多重線型形式である。
では、内積はテンソルか?ww
(参考)
URLリンク(ja.wikipedia.org)
内積
線型代数学における内積(ないせき、英: inner product)は、(実または複素)ベクトル空間上で定義される非退化かつ正定値のエルミート半双線型形式(実係数の場合には対称双線型形式)のことである。二つのベクトルに対してある数(スカラー)を定める二項演算であるためスカラー積(スカラーせき、英: scalar product)ともいう。
URLリンク(ja.wikipedia.org)
多重線型写像
一変数の多重線型写像は線型写像であり、二変数のそれは双線型写像である。より一般に、k 変数の多重線型写像は k 重線型写像 (k-linear map) と呼ばれる。多重線型写像の終域が係数体(スカラー値)のときはとくに多重線型形式と言う。例えば、スカラー積は対称双線型形式であり、行列式は正方行列の列(あるいは行)ベクトルを引数と見れば多重線型形式である。
すべての変数が同じ空間に属していれば、対称(英語版)、反対称、交代(英語版) k 重線型写像を考えることができる(注意すべき点として、基礎(英語版)環(あるいは体)の標数が 2 でなければ後ろ2つは一致し、標数が 2 であれば前2つは一致する)。例えば、スカラー積は対称であり、行列式は反対称である。
多重線型写像や多重線型形式は多重線型代数において研究の基本的な対象である。多重線型写像の系統的な研究により行列式、外積(フランス語版)、そして幾何学的内容を含む多くの他の道具の一般的な定義が得られる。
目次
1 定義
2 成分表示
3 テンソル積との関係
4 対称性・反対称性・交代性

・任意の双線型写像は多重線型写像である。例えば、ベクトル空間上の任意の内積や R3 のベクトルのクロス積は多重線型写像である。


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch