20/09/20 06:58:46.72 Xq8NqmL2.net
>>492
>雪江明彦のテキスト「代数学2」P86
> 定義 2.1.5 Mn(R)の乗法群をGLn(R)と書く。
で、キミ、肝心の「乗法群」の定義は見つけた?
まさか、探してないの? ボクはみつけたよ
ほれ
URLリンク(ja.wikipedia.org)
「数学と群論において、乗法群 (multiplicative group) は
次の概念を意味する:
体、環、あるいはその演算の1つとして乗法をもつ他の構造の、
可逆元が乗法の下でなす群。
体 F の場合には、群は {F ∖ {0}, •} である、
ただし 0 は F の零元であり二項演算 • は体の乗法である。」
>1)正方行列Aの成す群G→Aは可逆行列
>1)は雪江本と同じ書き方
ちがうな
誤 「…のなす群」
正 「…の乗法群」
キミが同じだと思ってる表現は、実は全然違う
「…のなす群」は「…全体がある演算でなす群」�