20/09/17 23:32:08.03 Goa0/AaP.net
>>465
つづき
可微分多様体 M がリーマン多様体であるとは、M 上の各点に基本計量テンソル gij(x) が与えられているものを言う。なお、局所座標系 (x0, x1, x2, x3) の四つの座標の内、x0 は適当な測定単位で測られた時間座標、x1, x2, x3 は空間座標とする。すなわち、x0 = ct, x1 = x, x2 = y, x3 = z であるとする。さらに、リーマン多様体上に定義されるテンソル概念に対して、上下に現れる同じ添字については常に和を取るというアインシュタインの縮約記法を用いる。
4.3 リーマンテンソル、アインシュタイン・テンソル
リーマンテンソル、アインシュタイン・テンソル
時空の曲率は、レヴィ・チビタ接続 ∇ が定義するリーマン曲率テンソル(Riemann tensor)R ρ
?σμν で表現される。局所座標表現では、次のように書ける。
アインシュタイン方程式とその特徴
一般相対性理論の基本方程式は、
G_μ ν +Λ g_μ ν =Κ T_μ ν
と表され、アインシュタイン方程式と呼ばれる。ここで Gμν はアインシュタインテンソル、gμν は計量テンソル、Λ は宇宙項、Tμν はエネルギー・運動量テンソルである。
κ (アインシュタインの定数)は、
Κ = 8πG/c^4
となる。G は万有引力定数、 c は光速である。4次元空間を考えれば、テンソルは対称なので、アインシュタイン方程式は、10本の方程式からなる。
(引用終り)
以上