20/09/16 23:08:47.54 eQpB/idh.net
>>443 補足
”雪江明彦のテキスト「代数学2」に、類似の記述を見つけた(^^;
「定義 2.1.5 Mn(R)の乗法群をGLn(R)と書く。A∈GLn(R)なら、Aは可逆行列であるという。」
Mn(R)は、R上のn x n 正方行列だが、Mn(R)は環だから、その乗法群としてGLn(R)を定義し
さらに、A∈GLn(R)として、可逆行列Aを定義している (^^”
(引用終り)
おサルの流儀だと、これ許されないみたいだな
先に、可逆行列ありきで、それを使って乗法群GLn(R)を作らないと、間違いだぁ~、なーんちゃってw(^^
雪江明彦、行列環 Mn(R)ありきで、乗法群GLn(R)ができて、そこから可逆行列A∈GLn(R) が出る
良いんじゃないですか、これで?w 群の定義に、乗法逆元の存在は定められているのだからねw(^^;