純粋・応用数学(含むガロア理論)4at MATH
純粋・応用数学(含むガロア理論)4 - 暇つぶし2ch503:現代数学の系譜 雑談
20/09/16 23:02:19.03 eQpB/idh.net
>>438 補足
>”正方行列から非可逆元をなくせば一般線型群GL(n, F)を成す”でどう
>下記一般線型群
>定義:行列式がゼロでない行列全体と言い換えてもよい
雪江明彦のテキスト「代数学2」に、類似の記述を見つけた(^^;
「定義 2.1.5 Mn(R)の乗法群をGLn(R)と書く。A∈GLn(R)なら、Aは可逆行列であるという。」
Mn(R)は、R上のn x n 正方行列だが、Mn(R)は環だから、その乗法群としてGLn(R)を定義し
さらに、A∈GLn(R)として、可逆行列Aを定義している (^^
これ、いいじゃない!w
雪江明彦「代数学2」をお持ちの方、ちらっと見て下さい(^^;
(参考)
URLリンク(www.nippyo.co.jp)
代数学2 環と体とガロア理論 雪江明彦 著 発刊年月 2010.12
目次
第2章 環上の加群
 2.1 行列と線形方程式
 2.2 行列式
(抜粋)
2.1 行列と線形方程式
(P84 R上のm x n行列の集合をMm,n(R)と書く。m=nのときは、Mn(R)とも書く。)
P86
上で述べたことにより、Mn(R)は、Inを単位元とする環になる。
定義 2.1.5 Mn(R)の乗法群をGLn(R)と書く。A∈GLn(R)なら、Aは可逆行列であるという。
Rが体なら*)、可逆行列という用語より正則行列という用語の方が一般的である。
(引用終り)
注:*) この雪江本では、体は可換である。P3に説明がある
あと
2.1 行列式
P92
注 2.2.10 Rが非可換で、例えばハミルトンの四元数だと
「Aが可逆行列←→detA≠0」といった性質が成立たない。
とあるね


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch