純粋・応用数学(含むガロア理論)4at MATH
純粋・応用数学(含むガロア理論)4 - 暇つぶし2ch41:現代数学の系譜 雑談 ◆yH25M02vWFhP
20/08/31 07:33:34 356lX/6R.net
>>32 補足
層の話は、前スレより 下記と加塩先生とを読み比べてみれば、tsujimotterがきっちり書いていることが、よく分かるでしょう(^^
スレリンク(math板:103番)
(抜粋)
tsujimotter氏の図解が良いね(^^;

URLリンク(tsujimotter.)ハテナブログ/entry/definition-of-sheaf
tsujimotterのノートブック
2019-06-21 層の定義
今回は、いよいよ層の定義をしてみたいと思います。

目次:
前層(復習)
前層の例
層の定義(2つの公理)
例1:共通部分を持たない開被覆
公理1:既約性条件
公理2:閉条件
例1のまとめ
例2:共通部分を持つ開被覆
公理1:既約性条件
公理2:閉条件
例2 まとめ
完全列を用いた層の定義の言い換え
まとめ
補足1:U = Φ の場合
補足2:解析接続と閉条件
参考文献

層の定義においては、この2つの公理が本質的なわけですが・・・。
tsujimotterには、この2つの公理がまーーーーーーったくもってわからなかったのです。
正直言って意味不明でした。どちらもステートメ


42:ントの意味がわからかったですし、何のためにこのような条件が課されているのかもわかりませんでした。 いろいろ試行錯誤をしていくうちに、数学ガールという本の、とある有名なキャッチフレーズを思い出しました。 《例示は理解の試金石》 そうだ! 例示をしてみればわかるかもしれない! そういうわけで、具体例の計算をしてみたのです。すると、不思議なことに、層の条件がなんだかわかってきた気がしました。 あっ、これ解析接続じゃん!!! と思うわけです。解析接続との関係については、補足2で改めて言及します。 対象をスキームとして、射をエタール射に置き換えた圏を考えると、その上でエタール層と呼ばれる層の類似物を定義することができます。このエタール層の層係数コホモロジーこそが、あの有名なエタール・コホモロジーです。そう言われるとちょっと嬉しく感じてきますよね。 圏論化することによる層の一般化の話は、整数論サマースクールの三枝先生の記事で読みました http://www4.math.sci.osaka-u.ac.jp/~ochiai/ss2009proceeding/SummerSchool-0201-2.pdf



43:現代数学の系譜 雑談
20/08/31 07:44:50.70 356lX/6R.net
>>37 補足
>>32より)
URLリンク(www.rs.tus.ac.jp)
代数学特論3 代数曲線論の入門的な授業のレジュメ (2018年度)加塩 朋和
(抜粋)
P30
9 層係数コホモロジー群 (1)
定義 58. X 上の (C-線形空間の) 前層 とは

注意 59. (1) 記法としては, 前層 F は, 線形空間と線形写像の集まり
(5) 前層は “どんどん局所へ制限していく” ことを定式化している.
定義 60. X 上の前層 F で以下を満たすものを 層 と呼ぶ:
注意 61. (1) 層は, 局所へ制限するだけでなく “局所的なデータから大域的なデータを
復元できる” ことを定式化している.
問題 8. リーマン面 X 上の 正則関数のなす層 OX を

で定める.
実際に OX が層であることを確かめよ.
(注:ここ、「 OX およびMX が層であることを確かめよ.」だと思う。MXが抜けたのだろう)
(余談:下記も分り易い例だね)
問題 10. x ∈ X での 摩天楼層 Cx を

で定める.
(1) Cx が層であることを確かめよ.
(2) Cx の各点でのストークを求めよ.
(3) Cx のサポートを求めよ.
注意 64. 前層 F の各ストーク Fx を “なめらかに” つなげたものが F の層化 Fa である.
(引用終り)
ここ、上記加塩先生「問題 8. リーマン面 X 上の 正則関数のなす層 OX 実際に OX が層であることを確かめよ.」が、>>37のtsujimotter氏の記事と符合しているよ(^^

44:132人目の素数さん
20/08/31 08:00:36 DzVUmZfn.net
前スレの話の続きを書きますね。
ジューコフスキー変換 w=z+a^2/z において
逆変換 z=f(w)とおくと、zは2次方程式z^2-wz+a^2=0
の根。しかし、ただの数字方程式ではなく
代数函数なのだから、2つの根が別々にあるんじゃなくて
解析接続でつながってる。
分岐点は±2aだから、w平面上に原点を中心とする
半径2aの円を描けば、円の内側と外側
(外側は∞を中心とする円内と考えられる)
で一価解析函数が2個づつ求まる。
だから、それら4個の解(数え方によっては2個の解)をもって、「つながり方」を示してやれば
一応完全な解ではある。
(セタンコが「等角写像だからぁ」と言っていたのは、それら1個ずつの解に過ぎない。)
実はそれら4枚の面(数え方によっては2枚)を適切につなげて
分岐点の所を埋めてやれば、1枚のリーマン球面と同相になる。
それはまぁ当然だろう、もともとz球面だったんだから。

45:132人目の素数さん
20/08/31 08:05:20.82 DzVUmZfn.net
つまり、w球面上の2重の分岐被覆面として、z球面が得られている。
このことから、パラメータtを適切に取ってやると
w=w(t),z=z(√t) のようにあらわせるだろう。
(t=r(cos(θ+isinθ)とおくと、zは
(r,θ),(0≦θ<4π)によって「一意化」されるはず。)
そういうことを求めてるのかな?と前スレ>879で思ったのだが
違うのならまぁいい。

46:132人目の素数さん
20/08/31 08:13:07.62 DzVUmZfn.net
一応書いておくと
t=(w-2a)/(w+2a)とおくと逆変換 w=-2a(t+1)/(t-1)で
z=w+√t(w+2a).
これはt=∞(つまりw=-2a)以外で成立する。
(w平面で言うと、原点中心ではなく、分岐点を中心にしていることがミソ。
あとメビウス変換で、2つの分岐点をそれぞれ0,∞ に移動することで半径の制約を無くした。)

47:132人目の素数さん
20/08/31 09:45:17.00 CK4NnquJ.net
>>37
なんだ、まだわからないのかw
公理2が「あっ、これ解析接続じゃん!!!」というのが誤り
解析接続を満たさないC∞関数も層を成すから
はい、セタ、トンデモw

48:132人目の素数さん
20/08/31 09:55:51 CK4NnquJ.net
>>39
>一価解析函数が2個づつ求まる。

2個?

>それら4個の解

4個?

>それら4枚の面

4枚

面は2枚だと思うよ
複素平面全体から円の外側への写像と、内側への写像の2枚
つまり、2つの解の1つが円の外側で、もう1つが内側
どう数えても解は2つで、枚数も2枚 違う?

>適切につなげて分岐点の所を埋めてやれば、
>1枚のリーマン球面と同相になる。

そもそもジューコフスキー写像はリーマン球面の二重被覆だからな
で、被覆面もリーマン球面、というのはその通り

で被覆面のほうから元のリーマン球面へ写像する場合
2重になってる被覆面の1重分の値域が
リーマン球面上の「半球」になる
それが円の内側と、外側にあたるというわけ

49:132人目の素数さん
20/08/31 10:06:05.92 CK4NnquJ.net
>>40-41
いいんじゃないか?
w=-2a(t+1)/(t-1)
z=w+√t(w+2a)
としたとき√tを適切に2つの一価解析写像に分ければ
円内と円外の区別ができる筈

50:132人目の素数さん
20/08/31 10:20:40.13 CK4NnquJ.net
セタは正則行列も知らないくらいだから
単体のホモロジー・コホモロジーも知らないだろう
そんな奴が層係数のコホモロジーとか分かるわけないだろ
だいたい、ホモロジーとコホモロジーの関係も分かってないだろ
サインとコサインみたいなもんだと思ってるんじゃないか?w

51:132人目の素数さん
20/08/31 12:12:47.94 o86d3Fhu.net
>>42
>公理2が「あっ、これ解析接続じゃん!!!」というのが誤り
>解析接続を満たさないC∞関数も層を成すから
落ちこぼれが、何を言っているのかねーw
>>37より)
いろいろ試行錯誤をしていくうちに、数学ガールという本の、とある有名なキャッチフレーズを思い出しました。
《例示は理解の試金石》
そうだ!
例示をしてみればわかるかもしれない!
(引用終り)
って書いてあるだろ?
tsujimotterの記事全体を読めば分かる
彼の記事のコンテキストから読めるのは、
「あっ、これ解析接続じゃん!!!」
の意図は、層は解析接続を抽象化したものだってことだよ
彼の言いたいことは
そしてそれは、>>38の加塩先生のPDFの
問題 8. リーマン面 X 上の 正則関数のなす層 OX

実際に OX が層であることを確かめよ.
と、符合しているってことですよ(^^

52:132人目の素数さん
20/08/31 13:55:35.13 CK4NnquJ.net
>>46
>彼の記事のコンテキストから読めるのは、
>「あっ、これ解析接続じゃん!!!」
>の意図は、層は解析接続を抽象化したものだってことだよ
コンテキスト関係ないw
解析接続の抽象化なら、解析接続の性質を有しない
連続関数は、層にならない筈
し・か・し、実際は層になる
URLリンク(ja.wikipedia.org)(%E6%95%B0%E5%AD%A6)
「連続関数の層
 Xを位相空間とする。
 X の開集合 U に対して、その上の複素数値連続関数のなす空間を C(U) とかくことにする。
 開集合の包含関係 V ⊆ U に対して関数の定義域の制限 C(U) → C(V) を考えることで X 上の層が得られる。
 点x におけるこの層の芽とはxのまわりでの関数の局所的な振る舞いを表していると考えることができる。」
ものの見事に反駁されとるwww
大学も受からなかった落ちこぼれセタが、何をウソ八百言っているのかねーwww
だから
「正方行列の全体は群を成す!いかなる正方行列も逆元を持つ!」
なんていってクソ壺で溺死するんだよ ばぁぁぁぁぁかwwwwwww

53:132人目の素数さん
20/08/31 14:11:07.86 o86d3Fhu.net
>>46 補足
C∞の層はあんまし面白くないみたいだな
まずは、下記向井 茂先生
「・ 層( sheaf )
大雑把にいって
層' X 上の代数的(正則) ベクトル束 (10)
です(X が代数多様体のときは「代数的」、複素多様体のときは「正則」が対応します)。」
こっから入っていけば良い。C∞の層はあんまし面白くない(^^;
代数的、正則、まずはこの二つよ
(参考)
URLリンク(www.math.nagoya-u.ac.jp)
浜中 真志 名古屋大学 大学院多元数理科学研究科
URLリンク(www2.yukawa.kyoto-u.ac.jp)
講義録
Fourier-Mukai変換
向井 茂 述
浜中 真志 記
1998 年 12 月 9 日
Fourier-Mukai 変換(以下FM 変換と書く) というのは、Fourier 変換の拡張です。Fourier 変換
というのは普通、関数を展開してやるものですが、これを層でやるというのがFM 変換です。
Fourier 変換の拡張という話はいろいろあります。一番簡単なものですと、例えば次のようなも
のがあります。

ここからいろいろな話を続けていくことができます。これからやるFM 変換の場合により近い
例としては、次のようなものがあります。まず、
V : 有限次元(実) ベクトル空間(4)
を持ってきて、

で、こういうのをここまでは多様体上の関数に対してやっていたんですが、今度は多様体上の
層に対してやればどうなるかということを考えます。
そのためにまず、基本単語の説明をします。
・ カテゴリー( category )
数学的には

射の全体Hom(X; Y ) が群構造を持ち、(iv) までくると、X とY というobject の間
の射の全体Hom(X; Y ) がベクトル空間の構造を持ちます。それから、今日の話で関係する
カテゴリーは
     object               morphism
(v) 代数的(複素) 多様体X 上の(連接) 層  その間の準同型
です。これには少し戸惑うかもしれませんが、恐れる程のことはありません。
つづく

54:132人目の素数さん
20/08/31 14:11:37.82 o86d3Fhu.net
>>48
つづき
・ 層( sheaf )
大雑把にいって
層' X 上の代数的(正則) ベクトル束 (10)
です(X が代数多様体のときは「代数的」、複素多様体のときは「正則」が対応します)。
こう思って大体話が通じますが、時々話が通じないことも事実です。そのときに何に注意すれ
ばいいかと言いますと、X の閉部分多様体Y 上のベクトル束を(補集合X !Y では零になる
ように) 拡げたものも層だということです。層というのは多様体の各点にベクトル空間が生
えたものです。このベクトル空間の次元が各点で全て同じならば、本当にベクトル束です。
ただ各点で次元がジャンプすることがあります。例えば、摩天楼層がそうです。摩天楼層と
いうのはX の1点x 2 X に有限次元ベクトル空間を生やしたものです。
関数のFourier 変換を層のFourier 変換(FM 変換) に拡張するためにどうすればいいかですが、
結論から先に言いますと次の置き換えをすることになります:
関数のFourier   変換層のFourier 変換(FM 変換)
実ベクトル空間V    複素トーラスX
V の双対空間V     X の双対トーラス?X
関数f           連接層F
核関数e^2?i(v,α) on VxV^ Poincare 直線束P on XxX^
関数の積分        層のコホモロジー群
それで、まず複素トーラスX ですが、それは次のように定義されます。

(引用終り)
以上
是非、原文をば(^^

55:132人目の素数さん
20/08/31 15:21:19.20 CK4NnquJ.net
>>48
>C∞の層はあんまし面白くないみたいだな
面白くないから層じゃないのか?
貴様は馬鹿か?白痴か?
もういいから貴様は数学やめろ
粗雑な貴様に精密な現代数学なんか到底理解不能
「正方行列の群」?貴様 白痴か!!!

56:132人目の素数さん
20/08/31 16:27:51.16 o86d3Fhu.net
>>48 補足
代数幾何学や複素多様体やスキームの理論�


57:ナは、連接層又は準連接層の理論が成り立ち、豊富な結果が得られている C∞の層? そんなの当面無視しとけ~!!w(^^; (参考) https://ja.wikipedia.org/wiki/%E9%80%A3%E6%8E%A5%E5%B1%A4 連接層 (抜粋) 代数幾何学や複素多様体やスキームの理論では、連接層(れんせつそう、英: coherent sheaf)とは、底空間の幾何学的性質に密接に関連する、扱いやすい性質をもった特別な層である。 連接層は有限ランクのベクトルバンドルや局所自由層の一般化とみなすことができる。ベクトルバンドルとは違い、連接層のなす圏は、核(英語版)や余核や有限の直和といった操作で閉じている「素晴らしい」圏である。準連接層(じゅんれんせつそう、英:quasi-coherent sheaf)は連接層における有限性の仮定をはずしたもので、ランク無限の局所自由層を含んでいる。 代数幾何学や複素解析の多くの結果や性質が、連接層、準連接層やそれらのコホモロジーのことばで定式化される。 定義 環付き空間 (X, OX) の上 OX-加群の層 F が連接層であるとは、次の性質をもつ場合をいう[1]。 略 環 OX の層が連接層であるとは、それ自身を OX-加群の層とみなしたときに、連接であることとする。環の連接層の重要な例として、複素多様体の正則函数の芽の層やネタースキーム[3]の構造層がある。 連接層はいつも、有限表現可能な層である。言い換えると X の各々の点 x は開近傍 U を持ち、F の U 上への制限 F|U が、ある整数 n, m について射 OXn|U → OXm|U の余核と同型になることである。OX が連接層であれば、逆も正しい、つまり有限表現可能な OX 加群の層は連接層である。 {O}_{X}-加群の層 {F} が準連接層とは、局所表現を持っている場合、つまり、X の任意の点 x にたいしその開近傍 U が存在して、次の完全系列が成立する場合のことを言う。 つづく



58:132人目の素数さん
20/08/31 16:28:27.07 o86d3Fhu.net
>>51
つづき
連接層の例
・環付き空間 X 上の {O}_X-加群 {F} が局所自由(locally free)とは 略
・X = {Spec}(R) とすると、R はネーター環である。すると、R 上の有限生成射影加群(英語版)(finitely generated projective module)は局所自由 {O}_X-加群とみることができる。
・岡の連接定理は、複素多様体上の正則函数の層が環の連接層であるという定理である[3] 。
・ベクトルバンドルの切断の層(スキーム上、もしくは、複素解析空間の上の)は連接層である。
・イデアル層:Z が複素解析空間 X の閉複素部分空間であれば、Z でゼロとなるすべての正則函数の層 IZ/X は連接層である。同様に、閉部分スキーム上でゼロとなる代数多様体の射(regular functions)の層は連接層である。
・X の閉部分スキームや閉解析的部分空間 Z の構造層 OZ は X 上の連接層である。層 OZ は開集合 X - Z の中の点では(以下に定義する)ファイバー次元がゼロに等しく、Z の中の点では 1 に等しい。
性質
(X, OX) 上の連接層の圏は、アーベル圏であり、(X, OX) 上のすべての層のアーベル圏の充密な部分圏である。 (同様に、環 R 上の有限生成加群の圏も、すべての R-加群の圏の充密なアーベル部分圏である。) R により、大域切断のなす環 Γ(X, OX) を表すとすると、任意の R-加群は自然な方法で OX-加群の準連接層となり、R-加群から準連接層への函手をさだめることができる。しかし一般には、すべての準連接層がこの方法で R-加群から得られるわけではない。座標環 R を持つアフィンスキーム X に対しては、この構成は X 上の R-加群と準連接層の間の圏同値を与える。とくに環 R がネーター環の場合は、連接層は有限生成加群にちょうど対応する。
可換環に関するいくつかの結果は、自然に連接層を使い解釈することができる。例えば、中山の補題は F が連接層であれば、点 x での F のファイバー Fx?OX,xk(x)(剰余体 k(x)上のベクトル空間)がゼロであることと、層 F が x のある開近傍でゼロであることは同値である(と言い換えることができる)。
つづく

59:132人目の素数さん
20/08/31 16:28:47.00 o86d3Fhu.net
>>52
つづき
連接コホモロジー
連接層の層係数コホモロジー論は、連接コホモロジー(coherent cohomology)と呼ばれる。これは層の主要で最も実りの多い応用の一つで、この結果はただちに古典的な理論と結びついている。
フレシェ空間のコンパクト作用素の定理を使い、カルタンとセールは、コンパクトな複素多様体上では、任意の連接層のコホモロジーは有限次元のベクトル空間になるという性質を持っていることを証明した。
この結果は、ケーラー多様体上の局所自由層の特別な場合に、小平邦彦により以前に証明されていたものの拡張である。GAGA の同値性の証明に重要な役割を果たしている。この定理の代数的な(非常に簡単な)バージョンは、セールにより証明された。この結果の相対的なバージョンは、グロタンディーク(Grothendieck)により代数的な場合に証明され、グラウエルト(英語版)(Hans Grauert)とレンマート(英語版)(Reinhold Remmert)が解析的な場合に証明した。例えば、グロタンディークの結果は、f をスキームの固有射としたときに、連接層 F のプッシュフォワード、函手 Rif*F が連接層になることを主張する。(この函手Ri f*は層の順像(英語版) f* の右導来函手である。)セールの結果は相対的な結果を点への射に適用したものとみなすことができる。
(引用終り)
以上

60:132人目の素数さん
20/08/31 16:41:56.79 o86d3Fhu.net
>>51 補足
代数多様体と解析多様体と
この二つが、層を理解する上で、超重要なのです
まずは、この二つ
C∞の層? そんなの当面無視しとけ~!!w(^^;
URLリンク(ja.wikipedia.org)
代数幾何学と解析幾何学
(抜粋)
代数幾何学と解析幾何学(フランス語: Geometrie Algebrique et Geometrie Analytique、略称: GAGA)[1]は密接な関係にある。代数幾何学は代数多様体を研究するのに対して、解析幾何学は複素多様体やより一般的に多変数の(複素)解析函数のゼロ点で局所的に定義された解析空間(英語版)を扱う。これら2つの深い関係は、代数的なテクニックを解析空間へ適用したり、逆に解析的テクニックを代数多様体へ適用したりする上で応用されている。
主要な結果
X を複素射影代数多様体とする。X は複素多様体であるので、複素数の点 X(C) はコンパクト複素解析空間の構造を持ち、Xan と表わされる。同様に、 {F}}} {F}} を X 上の層とすると、Xan 上の対応する層 {F}}^{an}}} {F}}^{{an}}} が存在し、これが解析的な対象と代数的な対象を関連付ける函手となる。典型的な X と Xan を関連付ける定理は、次のように言うことができる。
X 上の任意の 2つの連接層 {F} と {G}に対し、自然な準同型

は同型である。ここに、 {O}_{X}は代数多様体 X の構造層であり、 {O}_{X}^{an} は解析的多様体 Xan の構造層である。言い換えると、代数多様体 X の連接層の圏と解析多様体 Xanの圏は同値であり、同値性は {F} から {F}^{an}への写像により与えられる。(特に、 {O}_{X}^{an} 自身 が連接層であることは、岡の連接定理として知られている。)
もうひとつの重要なステートメントは、以下である。代数多様体 X 上の任意の連接層 {F}に対し、準同型

は、すべての q について同型である。このことは、X 上の q次コホモロジー群と、Xan 上の q次コホモロジー群が同型であることを意味する。
この定理はより一般的な場合にも成り立つ。(詳しくは、GAGAの公式ステートメントを参照。)この定理と証明は、周の定理、レフシェッツの原理や小平消滅定理のような多くの結果がある。
つづく

61:132人目の素数さん
20/08/31 16:42:24.77 o86d3Fhu.net
>>54
つづき
背景
代数多様体は、局所的には多項式の共通なゼロ点として定義され、複素数上の多項式は正則函数でもあるので、C 上の代数多様体は解析空間と解釈することもできる。同様に、多様体間の正規写像は解析空間の間の正則写像と解釈することができる。少し驚くべきことであるが、しばしば、解析的対象を代数的な方法で解釈することも可能である。
例えば、リーマン球面からリーマン球面自身への解析函数は、有理函数か、もしくは恒等的に無限大の函数であることが容易に証明できる(リウヴィルの定理の拡張として)。もしそのような函数 f が定数ではないとすると、f(z) が無限遠点となるような z の集合は孤立していて、リーマン球面はコンパクトであるから、高々有限個の z しか f(z) の値が無限大にならない。そのような z のあらゆる点でのローラン展開を考え、特異点を取り除くと、C 上に値を持つリーマン球面上の函数は、リウヴィルの定理により、定数函数しか残らない。このようにして f は有理函数となる。この事実は、代数多様体として、複素射影直線とリーマン球面との間には本質的な差異は存在しないことを示している。
重要な結果
代数幾何学と解析幾何学の間の比較の結果は、長い歴史を持っている。19世紀に始まり現在まで続いている。より重要な結果をここに時系列で記載する。
リーマンの存在定理
レフシェッツの原理
周の定理
GAGA
GAGAの公式ステートメント
少し一般性は低くなるが、GAGAの定理は、複素多様体 X の上の代数的連接層の圏と対応する解析空間 Xan の上の解析的連接層の圏が、圏同値であることを言っている。解析空間 Xan は、大まかには、座標変換(the coordinate charts)を通して Cn から決まる複素構造を X へ引き戻すことによって得られる。実際、この方法で定理を言い換えることはセールの論文の精神に近く、上記の公式のステートメントを使うことでその重要さが分かるスキーム論は、GAGAの出版された当時はまだ理解されてはいなかった。
(引用終り)
以上

62:132人目の素数さん
20/08/31 17:42:23 CK4NnquJ.net
>>51-53
層の公理2(閉条件)が解析接続と無関係だと認めたんだね?
み・と・め・た・ん・だ・ね?

で、もしかして解析接続の性質を持つ層が連接層だといってる?
それ、証明した?まぁた、口からデマカセじゃないの?w

63:132人目の素数さん
20/08/31 17:53:30 CK4NnquJ.net
>>51
>環付き空間 (X, OX) の上 OX-加群の層 F が連接層であるとは、
>次の性質をもつ場合をいう。
>略

肝心の定義を省略する大馬鹿野郎
ちゃんと書け、ちゃんと読め 
ま、貴様には死んでも理解できまいがなwwwwwww

1.F は、OX 上に有限型である。
  つまり、X の任意の点 x について、開近傍 U が存在して、
  F の U への制限 F|U が、有限個の切断により生成される。
 (言い換えると、全射 OX^n|U → F|U がある自然数 n に対し存在する。)
2.任意の X の開集合 U、自然数 n、OX-加群の射(morphism)φ: OX^n|U → F|U に対して、
  φの核が有限型である。

64:132人目の素数さん
20/08/31 18:03:44.20 CK4NnquJ.net
>>51
>C∞の層? そんなの当面無視しとけ~!!
C∞の場合、ファイバー束でOKだからな
ファイバー束
URLリンク(ja.wikipedia.org)
切断
URLリンク(ja.wikipedia.org)(%E4%BD%8D%E7%9B%B8%E5%B9%BE%E4%BD%95%E5%AD%A6)

65:132人目の素数さん
20/08/31 18:48:13.03 DzVUmZfn.net
>>43
w平面の函数要素を考えていたので、4個と数えたんですね。
z平面から見ると、円周|z|=a の内側と外側で綺麗に
2枚分に分かれるので、2枚と数えるのが普通でしたね。

66:132人目の素数さん
20/08/31 18:50:48.76 DzVUmZfn.net
>>41
訂正
z=(w+√t(w+2a))/2.  /2 が抜けてました。
さらに計算すると
z=-a(√t+1)/(√t-1).
逆変換すると
√t=((z/a)-1)/((z/a)+1).
円周|z|=a は√t平面では何に写るか?
z/a=e^(iθ) とおくと、√t=itan(θ/2)だから、虚軸に写る。
したがって、Re(√t)が正または負にしたがって、zは円周の外側または内側になりそう。

67:132人目の素数さん
20/08/31 19:14:55.13 DzVUmZfn.net
正直、こんなにうまくいくとは思わんかったw
まとめると
t=(w-2a)/(w+2a),
w=-2a(t+1)/(t-1),
z=-a(√t+1)/(√t-1).
t=r(cosθ+isinθ) とおいて、(r,θ) (0<r<∞, 0≦θ<4π)
によって、函数 z=f(w)を一意化すると
zの値が円|z|=aの内側にあるか外側にあるか或いは周上にあるかは
rにはよらず、θのみによって決まる。

68:132人目の素数さん
20/08/31 19:43:53 CK4NnquJ.net
>>59
>w平面の函数要素を考えていたので、4個と数えたんですね。
やっぱわからん 4つ具体的に作ってみた?

>>61
そうなるだろうね

69:132人目の素数さん
20/08/31 20:00:45 DzVUmZfn.net
>>62
前スレで、別のひとが、「w平面の原点中心に解が得られるから簡単」
のように言っていた(正確にはそのように自分は捉えた)ので、それが頭にあったんですよ。
仮にその解を「べき級数」のことだとすると、円周|w|=2a上に特異点があるので
そこまでしか収束しない、従ってその範囲でしか有効な表現ではない。
結局そのような「函数要素」が4つ貼り合わさったものが全体像になる
と思ったんですね。
つまりw平面の(円内・円外)×2と考えたわけです。

70:現代数学の系譜 雑談 ◆yH25M02vWFhP
20/08/31 21:10:29 356lX/6R.net
>>31
>"エルランゲン・プログラム的視点":”的”と”視点”が入っていることを見落としているぜ
>またまた、揚げ足を取りに来て、踏みつぶされるの図か(^^

下記書籍「現代幾何学の流れ」の巻頭論文が
砂田利一氏の”現代幾何学の生成 19世紀幾何学の「遺産」と20世紀幾何学の「精神」”だが
(この本は、私の書棚の肥やしですが)
このP9に「3.エルランゲン目録-幾何学とは何か-」の章がある。1872年に提示されたとある
P12に「4.接続の幾何学」の章がある
エルランゲンなんぞ、砂田利一に限らず、いろんな人がいろんなところで書いている
それをベースに、"エルランゲン・プログラム的視点"と書いただけのことw(^^;

URLリンク(www.nippyo.co.jp)
現代幾何学の流れ 日本評論社 砂田利一 編 発刊年月 2007.10

目次
現代幾何学の生成 19世紀幾何学の「遺産」と20世紀幾何学の「精神」/砂田利一

チャーン チャーン特性類/小林昭七

トム コボルディズム理論、カタストロフィー理論/福田拓生

小林昭七 小林双曲的多様体の理論/野口潤次郎

ヒルツェブルッフ リーマン-ロッホの定理の解決/加藤文元

スメール 双曲力学系/林 修平

ミルナー 微分位相幾何学、異種球面の発見/佐藤 肇

クリンゲンバーグ パッキングの問題(古典的球面定理)/塩濱勝博

アティヤ-シンガー アティヤ-シンガーの指数定理/吉田朋好

ベルジェ 幾何のエスプリ/酒井 隆

サリヴァン サリヴァンの手術理論/森田茂之

モストフ 強剛性定理と非数的格子/佐武一郎

グロモフ 幾何学的群論/藤原耕二

ヤウ カラビ-ヤウ多様体/小林亮一

サーストン 3次元多様体論/小島定吉

フリードマン 4次元ポアンカレ予想の解決/松本幸夫

ドナルドソン ゲージ理論の4次元位相幾何学への応用/橋本義武

ウィッテン 位相的場の理論、サイバーグ-ウィッテン不変量/中島 啓

コンツェヴィッチ 量子不変量/深谷賢治

71:現代数学の系譜 雑談 ◆yH25M02vWFhP
20/08/31 21:15:55 356lX/6R.net
>>61
>正直、こんなにうまくいくとは思わんかったw
>まとめると

お疲れさまでした
まとめ、ありがとう(^^

72:132人目の素数さん
20/08/31 23:47:19.62 VsKp6cIi.net
01 02
03 04 05
06 07 08 09
10 11 12 13 14
15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31 32 33 34 35
36 37 38 39 40 41 42 43 44
44 36
43 35 28
42 34 27 21
41 33 26 20 15
40 32 25 19 14 10
39 31 24 18 13 09 06
38 30 23 17 12 08 05 03
37 29 22 16 11 07 04 02 01
上の数列を下の数列に変換する
アルゴリズムを見つけてくれ(^_^)ノ

73:132人目の素数さん
20/09/01 06:09:29.64 S0c5RHlN.net
>>64
>私の書棚の肥やし
無駄だね 即刻古本屋に売りなよ
あんたに数学は無理 別の趣味を見つけな

74:132人目の素数さん
20/09/01 06:21:18.89 S0c5RHlN.net
>>63
>w平面の(円内・円外)
 z=(w+√t(w+2a))/2 だよね
 その区別、要らない。接続してるから
>解を「べき級数」のことだとすると、円周|w|=2a上に特異点があるので
>そこまでしか収束しない、従ってその範囲でしか有効な表現ではない。
>結局そのような「函数要素」が4つ貼り合わさったものが全体像になる
>と思ったんですね。
冪級数の張り合わせで解析接続するんなら「2つ」じゃすまない
しかしそれは一価関数としては1つだから問題ない。
結局特異点を結ぶ線で切断すれば、2つの一価関数で足りる
(切断線に任意性はあるが、決めてしまえばいい)

75:132人目の素数さん
20/09/01 06:52:24.39 S0c5RHlN.net
◆yH25M02vWFhP が本当に数学を理解したいんなら
真っ先に以下を実行したほうがいい
1.数学板のアクセスをやめる
2.山ほど買った数学書のどれでもいいから1冊読み切る
  (啓蒙書とか概説書はNG)
ふんぞりかえって
「貴様等、世界のエクゼクティブの俺様に
 エグゼクティブ・サマリーを見せてみろ!」
と吠え続けるなら数学諦めたほうがいい

76:現代数学の系譜 雑談
20/09/01 06:57:07.39 pGoi0nQw.net
>>54 補足
>C∞の層? そんなの当面無視しとけ~!!w(^^;
秋月康夫先生が、下記1955年 科学基礎論研究に書いています
「C∞-多様体上のC∞-函数の全体についても層を
考えることができる.そこで'解析的な層'だとか,‘C∞の層'を考えることができるが,
C∞-理論は層を要しないでも得られるものであるに対し,複素解析的理論は層によって初めて明かになし得られたものである.」
と。用語は少し古い。また、層の定義も、古風だ。が、秋月康夫先生は、”科学基礎論研究”として、数理哲学を語っているのです
そこに、値打ちがあり、一読の価値があると思う
(参考)
URLリンク(www.jstage.jst.go.jp)
多様体の概念について(秋月康夫)科学基礎論研究January1955
(抜粋)
P62
大域化する場合においても,局所的に'ばらばら'に与
えた更に広い世界を構成し,自由に思考ができる場所を
こしらえてその中で接ぎ合わしていくといった立場を取
る.而してこれには寧ろ極度に拡張した抽象的体系を取
るのが却って見通しやすくするものである.この方面の
代表的概念としてはFiberbundleを挙げねばならない.
BがFiberbundleとは

P63
c∞-多様体M上ではc∞の函数は環F(M)を作る
が,複素解析多様体についてはかかる環は考えられない.
そこでR(M)の代りに,各点(のと(x)における解析
的要素f(x)(局所複素座標x1…xnによる整級数)との
組(X,f(X))の全体から成る集合(点(x)をもM上に
変えて)を取る.解析的な微分形式についても,また有
理型の微分形式(これは複素直線バンドル上の解析的微
分形式として)についても同様のものを取る.そしてか
かる体系に


77:共通な性質をうまく抽象して得られたのが層 (Faisceau,Scheaf)の概念である.1) ( 1)このような概念化は絵画などにtcとえると非常にしつかりした‘素描'のように感じられる.) この層の概念の把握により閉じた複素解析的多様体-Kahler計量を許すものではあるが-の理論は最近に飛躍的な発展を遂げたのであり, これを成就した最も主要な人の一人はわが小平邦彦君であった. つづく



78:現代数学の系譜 雑談
20/09/01 06:57:29.22 pGoi0nQw.net
>>70
つづき
層の定義を述べよう.
Fが多様体M上の層とは
1.Fは位相空間であり,Fから底空間Mへの一意写像π(これを射影という)が存在する.即ちPεF→π(P)=xεM.
2.M上の各点(x)に対し,πの原像Fx=π-1(x)は加群を作り,Fxの位相はFの位相について分散的である.
3.PεFの近傍Uと,x=π(P)εMの近傍π(U)とは位相合同である.
4.Fx上の加法は,Pの位相について連続写像である.
これが層の定義である.Mが複素解析多様体のとき,
解析的要素の集合は層を作るが,それは唯一つの層ではない C∞-多様体上のC∞-函数の全体についても層を
考えることができる.そこで'解析的な層'だとか,‘C∞の層'を考えることができるが,
C∞-理論は層を要しないでも得られるものであるに対し,複素解析的理論は層によって初めて明かになし得られたものである.
P64
この層の定義はH.Cartanによるが,それは岡潔君
の不定域イデアルの概念を基に抽象化し公理的に述べた
ものなのである.(尤も他方Lerayが別の立場から層を
考えてはいたが.)かかる不定域イデアルとか,層とかい
うような概念が生み出されざるを得なかった根本的な因
由は,実にn≧2なることに存する.n=1ならば問題は
なかった.η=1ならば,複素直線(即ちガウス平面)
の完備化(無限遠点を追加して閉じた面とする)は唯一通りよりなくわれわれの慣れている数球面(即ち射影直
線)を取ることであるに対し,n≧2の場合には複素アフィン空間の完備化は幾通りにも可能である.というよ
うに,n=1とn≧2とでは根本的な差があるのである.
n=1ならば閉じていさえすれば,どんな複素解析的な
Riemann多様体もすべて射影空間に入って了うが,n≧2の場合には閉じていても,射影空間(どんなに高次元
にとっても)には入り得ないものが存在するのである
(これは直ぐ円環体で例示される).即ちn≧2では最早
や射影空間(といっても複素的射影空間であるが)は絶
対者ではあり得ない.すると射影空間に入るような閉じ
た解析多様体の特性如何という問題が直ちに提出されよ
うが,これに解決を与えたのが小平君である.即ちHodge型の多様体(説明は省くが基本的な概念だけで規定
されるものである)は射影空間に入る(逆は自明)とい
う定理である.
つづく

79:現代数学の系譜 雑談
20/09/01 06:58:19.48 pGoi0nQw.net
>>71
つづき
これは層の概念をうまく適用して得られ
たのである.また長い間難渋を極めていた中心問題の
Riemann-Rochの定理の拡張も層の概念を用いて小平
君やSerreによって見通されるに到ったのである.この
ように華々しい進展はあっても,多様体にはなお未解決
の深い問題は多数あって明日を待っている現状である.
層の概念の畠現によって短時日の間にかく理論は躍進
を遂げたが,それには躍進が行われる地盤が既に育まれ
ていたからである.それはPoincareに始まる代数的位
相幾何学であり,そのホモロギー論特にそれに関連し
て得られたdeRhamのコホモロギー論である.また
Hodgeに始まる調和積分論があった.また層には到ら
ないまでも,整数論のイデールに当るcoelementの理
論を樹てて,層係数のコホモロギー理論を示唆(明かに)
しているWeilの業績が,複素直線バンドルの活用とと
もに燦然と光っていることを附記しなければならない.1)
(1)とれらの詳細は勿論,おぼろげながらもここに説明することは不可
能である.これについては岩波現代数学,秋月,井草,中野著調和積
分論(近刊)にいて見られたい.)
つづく

80:132人目の素数さん
20/09/01 06:58:30.62 S0c5RHlN.net
ああ、それから
>(^^ 
↑このバカ絵文字、やめてなw
安達の(笑、同様 只の負け犬の強がりだから
こういうのがみっともないと思わない時点で他人全員に負けてるよな

81:現代数学の系譜 雑談
20/09/01 06:58:40.54 pGoi0nQw.net
>>72
つづき
P66
この'定域'を'不定域'に開いたのが層係数のコホモロギーである.(岡君の不定域イデアル!)
不定域にすることは,被覆系U={Ui}を固定しない
で,更にそれを細分して行く系列Uαを考えその極限を
見ることに当る.そして各野のnerveN(Uα)につ
いての層係数のコホモロギー群の極限について見るのである.
このように層係数のコホモロギーは相当に複雑な機構
をもつものである.然るにそこに明快な理論が成立つ.
これを得しめたものは何か.これは興味ある疑問であろ
う.それは'完全系(exactsequence)'という群論的
思惟の図式化が行われており,これによってこの高層建
築も比較的に易々と図引くことができたのである.
群の準同型になぞらえて層の準同型も定義され,また
その完全系も考えられる.
層係数のコホモロギー論がうまくいくのは,層F',F,
F"が完全系0→Ft→F→F"→0を作るとき,層係数の
コホモロギー群HP(F)[F係数のNerveのp次コホ
モロギー群〕において
の完全系を作ることが従うからなのである.このことが
輪転機の役割をして,幾くらでもコホモロギー群の完全
系が作れて,器械的に推理をどんどんおし進め得るので
ある.
(引用終り)
以上

82:132人目の素数さん
20/09/01 07:01:16.38 S0c5RHlN.net
>>70-74
不勉強なあんたに複素解析なんか一生理解できんから諦めな
なんで正則函数は等角写像なのか、理解してるのか?してねぇだろw

83:現代数学の系譜 雑談
20/09/01 07:09:53.44 pGoi0nQw.net
>>70
秋月康夫先生の1955年 科学基礎論研究
「多様体の概念について」
これぞ、まさに ”エグゼクティブ・サマリー”
こういうのをしっかり読んで、頭に入れておくと
現代数学の層の抽象的な定義も、頭に入りやすくなる
そして、「C∞の層? そんなの当面無視しとけ~!!」の意味も分かる(^^

84:現代数学の系譜 雑談 ◆yH25M02vWFhP
20/09/01 07:30:06 pGoi0nQw.net
>>31 補足
>>22
>等角写像と言えば、どちらかと言えば、クラインのエルランゲン・プログラム的視点に力点がある

”エルランゲン・プログラム的視点”とは、平たくいえば、幾何学的視点です
下記 等角写像:複素平面 z から複素平面 w への写像で、局所的に、微小な2つの線分が、その成す角を保存するように写像されるものをいう
下記「正則関数は等角写像である。逆命題も成り立つ」けれども
解析(関数論)というよりも、むしろ複素平面上の幾何です

そう捉えるのが正解です
等角写像では、難しい関数は、まれにしか出てこない
等角写像による翼型理論などは、中学・高校レベルの関数で終わっている
それは、力点が「複素平面上の”幾何”」にあるからです

複素平面 zの円を、複素平面 w の翼型に写すJoukovski の式という視点です
この幾何学的な視点も、大切なのです
(<5.Joukovski の翼 九大 辻井 正人> URLリンク(www2.math.kyushu-u.ac.jp)>>22))

URLリンク(ja.wikipedia.org)
等角写像
(抜粋)
等角写像(とうかくしゃぞう、英: conforma


85:l transformation)とは、2次元以上のユークリッド空間からユークリッド空間への写像であって、任意の点の近傍の微小な2つの線分が、その成す角を保存するように写像されるものをいう。いいかえれば、座標変換の関数行列が回転行列のスカラー倍となるものである。すなわち、平面上の一つの図形を他の図形に変換(写像)したとき、図形上の二曲線の交角はその写像によっても等しく保たれるような写像を等角写像と呼ぶ。 一見すると、原形から大きく図形が変わったように見えても、対応する微小部分に注目すると、原形の図形と相似になっているのが、等角写像である。等角写像は、複素関数論と深い関係があり、工学上、流体の挙動の記述などにおいて非常に有用である[1]。 複素関数の等角写像 複素平面 z から複素平面 w への写像である関数 w = f(z) について、正則関数は等角写像である。逆命題も成り立つ[2]。 (引用終り) 以上



86:132人目の素数さん
20/09/01 08:02:05 V/AkLYyF.net
>>68
概ね同意ですが
>冪級数の張り合わせで解析接続するんなら「2つ」じゃすまない
一般的にはですね。
しかしこの場合は「概ね」2つで済みますよ。
w球面で、0を中心とするべき級数と∞を中心とするものの2つです。
円周w=|2a|上にしか収束を邪魔する特異点はありませんから。
問題はこの円周上ですが、べき級数が意味を持つのは収束円内と一般的にはされますが
収束円上で意味を持たないということはない。
これは複雑で重要な研究対象です。
だから、円周w=|2a|を除けば完璧に2つで済む
円周w=|2a|上ははっきりしないが、おそらく「自然なつながり方」は一意的に決まるだろう。
だから、2つでいいんですよ。
全部で4つになりますがね。

87:132人目の素数さん
20/09/01 08:15:30 V/AkLYyF.net
>>61の「一意化」がうまくいったのは、「特異点の中心に飛び込んで」考えたから。
あとテクニカルには、もう一つの特異点が∞になるようにメビウス変換して、半径の制約をなくした。
そういうことです。

88:132人目の素数さん
20/09/01 10:19:18.78 JlmCPXEV.net
>>78-79
お疲れ様です
まとめ、ありがとう(^^

89:現代数学の系譜 雑談
20/09/01 10:37:07.34 JlmCPXEV.net
なんか、コテハン設定が抜けていたな(^^;
>>76 補足
>そして、「C∞の層? そんなの当面無視しとけ~!!」の意味も分かる(^^
下記、フィールズ賞 1954年
小平邦彦:He demonstrated, by sheaf cohomology, that such varieties are Hodge manifolds.
セール:Reformulated and extended some of the main results of complex variable theory in terms of sheaves.
二人とも、層の理論でフィールズ賞
”to Kahlerian and more specifically to algebraic varieties”、”the main results of complex variable theory”
algebraic variety と、 complex variety と
まず、この二つを押さえれば良いのです
”C∞の層”なんて、チラ見程度で良い。チラ見で混乱するなら忘れて良い
この二つで、層の理論の現代数学の王道は歩める
グロタンディークの代数幾何も含め
上記の二つで、層の理論の現代数学の王道は歩める
「C∞の層? そんなの当面無視しとけ~!!」(^^
(参考)
URLリンク(ja.wikipedia.org)
フィールズ賞
(抜粋)
1954年(アムステルダム)
小平邦彦(Kunihiko Kodaira, 1915年 - 1997年)日本の旗 日本
「 Achieved major results in the theory of harmonic integrals and numerous applications to Kahlerian and more specifically to algebraic varieties. He demonstrated, by sheaf cohomology, that such varieties are Hodge manifolds. 」
ジャン=ピエール・セール(Jean-Pierre Serre, 1926年 - )フランスの旗 フランス
「 Achieved major results on the homotopy groups of spheres, especially in his use of the method of spectral sequences. Reformulated and extended some of the main results of complex variable theory in terms of sheaves.

90:132人目の素数さん
20/09/01 10:59:08.64 aYAGLL8f.net
>>31
>>等角写像と言えば、どちらかと言えば、クラインのエルランゲン・プログラム的視点に力点がある

>"エルランゲン・プログラム的視点":”的”と”視点”が入っていることを見落としているぜ
> またまた、揚げ足を取りに来て、踏みつぶされるの図か(^^
物理数学の本にも、ジュコーフスキー変換という名前が載っていなくその式は載っているが、等角写像は載っている。
その物理数学の本に変換群は載っていない。
必ずしも等角写像に変換群は必要ない。

91:現代数学の系譜 雑談
20/09/01 11:00:20.09 JlmCPXEV.net
>>81 追加
検索でヒットしたので貼っておきます(^^
URLリンク(math00ture.blog.jp)
つれづれなるままの数学(算数)素数GPSの周辺 iPhoneとAndroid 366 aps
超難解な「宇宙際タイヒミュラー理論」に感動 (書籍『宇宙と宇宙をつなぐ数学』) 2019年06月04日
(抜粋)
参考
//////
「志村五郎名誉教授の理論」と「望月新一教授の理論」を学習するための基礎書籍
以下
代数曲線論(講座数学の考え方;18) / 小木曽啓示著 朝倉書店
◇複素数体上の代数曲線(コンパクトリーマン面)の教科書。リーマン球面の定義から始めて,層や層係数コホモロジーの理論が展開され,セールの双対定理やリーマン-ロッホの定理とその応用が扱われる。代数曲線論をきちんと学んでおくと,より高度な代数幾何学を勉強するための足がかりにもなる。

92:132人目の素数さん
20/09/01 11:30:00.19 aYAGLL8f.net
>>77
>”エルランゲン・プログラム的視点”とは、平たくいえば、幾何学的視点です
>下記 等角写像:複素平面 z から複素平面 w への写像で、局所的に、微小な2つの線分が、その成す角を保存するように写像されるものをいう
幾何学的視点だったら、余計エルランゲン・プログラムと等角写像は関係なくなる。
エルランゲン・プログラムは、図形において変わらない性質を保つようにするための群が設定出来るようにしてあればいい。
必ずしも等角写像にそのような性質があるとは限らない。
必ずしも等角写像で移される図形に角度を保つための群を設定出来るとは限らない。

93:現代数学の系譜 雑談 ◆yH25M02vWFhP
20/09/01 15:09:07 JlmCPXEV.net
>>77 補足

等角写像は、2次元に限られない(下記)
だから、等角写像=一変数正則複素関数ではない
例えば下記
"1 Conformal maps in two dimensions"
"2 Conformal maps in three or more dimensions"
など

2次元に限れば、等角写像=一変数正則複素関数ではあるけれども
一変数複素関数論は関数に主眼があるのに対し、等角写像論はあくまで その”像”に主眼があるのです

(参考)
URLリンク(ja.wikipedia.org)
等角写像(とうかくしゃぞう、英: conformal transformation)とは、2次元以上のユークリッド空間からユークリッド空間への写像であって、任意の点の近傍の微小な2つの線分が、その成す角を保存するように写像されるものをいう。いいかえれば、座標変換の関数行列が回転行列のスカラー倍となるものである。

URLリンク(en.wikipedia.org)
Conformal map For other uses, see Conformal (disambiguation).

In mathematics, a conformal map is a function that locally preserves angles, but not necessarily lengths.

For mappings in two dimensions, the (orientation-preserving) conformal mappings are precisely the locally invertible complex analytic functions. In three and higher dimensions, Liouville's theorem sharply limits the conformal mappings to a few types.

Contents
1 Conformal maps in two dimensions
1.1 Global conformal maps on the Riemann sphere
2 Conformal maps in three or more dimensions
2.1 Riemannian geometry
2.2 Euclidean space
3 Applications
3.1 Cartography
3.2 Physics and engineering
3.3 Maxwell's equations
3.4 General relativity
4 Pseudo-Riemannian geometry
5 See also

つづく

94:現代数学の系譜 雑談 ◆yH25M02vWFhP
20/09/01 15:09:57 JlmCPXEV.net
>>85
つづき

URLリンク(en.wikipedia.org)
Joukowsky transform

In applied mathematics, the Joukowsky transform, named after Nikolai Zhukovsky (who published it in 1910),[1] is a conformal map historically used to understand some principles of airfoil design.

Contents
1 General Joukowsky transform
1.1 Sample Joukowsky airfoil
2 Velocity field and circulation for the Joukowsky airfoil
3 Karman?Trefftz transform
3.1 Background
4 Symmetrical Joukowsky airfoils
5 Notes
(引用終り)
以上

95:現代数学の系譜 雑談
20/09/01 17:36:00.95 JlmCPXEV.net
>>71 補足
(再掲)
URLリンク(www.jstage.jst.go.jp)
多様体の概念について(秋月康夫)科学基礎論研究January1955
(抜粋)
P64
この層の定義はH.Cartanによるが,それは岡潔君
の不定域イデアルの概念を基に抽象化し公理的に述べた
ものなのである.(尤も他方Lerayが別の立場から層を
考えてはいたが.)かかる不定域イデアルとか,層とかい
うような概念が生み出されざるを得なかった根本的な因
由は,実にn≧2なることに存する.n=1ならば問題は
なかった.η=1ならば,複素直線(即ちガウス平面)
の完備化(無限遠点を追加して閉じた面とする)は唯一通りよりなくわれわれの慣れている数球面(即ち射影直
線)を取ることであるに対し,n≧2の場合には複素アフィン空間の完備化は幾通りにも可能である.というよ
うに,n=1とn≧2とでは根本的な差があるのである.
n=1ならば閉じていさえすれば,どんな複素解析的な
Riemann多様体もすべて射影空間に入って了うが,n≧2の場合には閉じていても,射影空間(どんなに高次元
にとっても)には入り得ないものが存在するのである
(これは直ぐ円環体で例示される).即ちn≧2では最早
や射影空間(といっても複素的射影空間であるが)は絶
対者ではあり得ない.すると射影空間に入るような閉じ
た解析多様体の特性如何という問題が直ちに提出されよ
うが,これに解決を与えたのが小平君である.即ちHodge型の多様体(説明は省くが基本的な概念だけで規定
されるものである)は射影空間に入る(逆は自明)とい
う定理である.
(引用終り)
この話で、佐藤超関数を思い出す
一変数なら、簡単に一変数正則函数との境界上での「差」で定義できるが
しかし、多変数になると、オリジナルの佐藤理論では、層係数コホモロジー理論を使う必要があった(下記、片岡 清臣)
これは、是非覚えておくべき
層の理論は、上記 秋月康夫にあるように、”n≧2”で威力を発揮するということを!!(^^
つづく

96:現代数学の系譜 雑談
20/09/01 17:36:42.86 JlmCPXEV.net
>>87
つづき
(参考)
URLリンク(ja.wikipedia.org)
佐藤超函数
佐藤超函数(さとうちょうかんすう、hyperfunction)は函数の一般化で、ある正則函数ともう一つの正則函数との境界上での「差」:
f(x)=F(x+i0)-F(x-i0)
として表される(正則関数 F(z)は f(x)の定義関数といい、 f(x)=[F(z)]と記す)[1][2][3][4]。
また、略式的には無限位数の極を持つシュワルツ超函数と見なすこともできる。
佐藤超函数はグロタンディークらの先駆的な仕事の上に1959年に佐藤幹夫によって導入された[1][2]。
URLリンク(www.ms.u-tokyo.ac.jp)
超局所解析と代数解析を巡って
片岡 清臣
2017年3月21日,於:東京大学大学院数理科学研究科
(抜粋)
P4
1変数の佐藤超関数f(x)は
f(x) = F+(x + i0) F(x -i0)
と解析関数F±(z)を使って書けて直観的にもわかり易い.
しかしn変数佐藤超関数は
B(Rn) := HnRn(Cn; OCn)
のように解析関数の層OCnを係数とし,実軸Rnに台をもつ相対コホモロジー群の元として定義される.
従って,理解するには,多変数解析関数の基本的性質 + 層係数コホモロジー群の消滅定理
などかなりの予備知識が必要.特に後者が大変.
P9
層 CM+|X, Mild性の導入
P16
導来圏,層の超局所台理論による初期値・境界値混合問題の超局所解析
フランスのSj¨ostrandやLebeauはFBI変換や評価の手法を駆使して回折現
象の超局所解析など,境界条件下での境界に沿う正則性伝播定理を得ていた.
しかし我々の境界値問題の超局所解析の手法,すなわち個々の解の構成にこだ
わる手法では境界条件下で境界に沿って正則性が伝播することを示すのが難
しかった.他方,極めて抽象的な理論である導来圏と柏原-Schapiraの層の超
局所台理論(Microlocal Study of Sheaves, Ast´erisques, 128,1985)
の組み合わせがこのような問題の解決に適していることを発見した.
(引用終り)
以上

97:132人目の素数さん
20/09/01 17:53:05.35 S0c5RHlN.net
>>76
>これぞ、まさに ”エグゼクティブ・サマリー”
>こういうのをしっかり読んで、頭に入れておくと
>現代数学の層の抽象的な定義も、頭に入りやすくなる
いやいや、全然頭に入ってないじゃん
エグゼクティブ要らんよ
>「C∞の層? そんなの当面無視しとけ~!!」
あんた、連接層だと何がどう都合がいいのか
全然わかってないだろ
>>77
>”エルランゲン・プログラム的視点”とは、
>平たくいえば、幾何学的視点です
全然説明になってませんw
>等角写像では、難しい関数は、まれにしか出てこない
馬鹿www
いくらでも難しい関数出てくるよ 
あんたが知らんだけwww
>等角写像による翼型理論などは、
>中学・高校レベルの関数で終わっている
正しくは
「Zhukovskiの変換に関することは
 中学・高校レベルの関数で終わっている」
>それは、力点が「複素平面上の”幾何”」にあるからです
いや、Zhukovskiの変換が簡単だから
>複素平面 zの円を、複素平面 w の翼型に写す
>Joukovski の式という視点
はい、今、君💩踏んだよw
「円を翼型に写す」
もし、繊細な数学的センスを有していたら、以下の疑問が生じるはず
「なんで、等角写像なのに、尖がった点が生じるの?」
もちろん、賢い人は答えが分かってますがねw

98:132人目の素数さん
20/09/01 17:53:46.41 S0c5RHlN.net
>>78
云いたいことはわかります
>円周w=|2a|を除けば完璧に2つで済む
そこ、わざわざ2つに分ける必要あります?
>円周w=|2a|上ははっきりしないが
円周上には特異点が2つありますね
ということは特異点を結ぶ弧は2つあるってことです
どちらか一方で、解析接続してしまえば(実際できますが)一体化できます
つまり、接続させる弧を決めてしまえば2枚にできます
もともと二重被覆でしかないのだから、それが本質的かと思います
>>79
>「特異点の中心に飛び込んで」
>もう一つの特異点が∞になるように
>メビウス変換して、半径の制約をなくした。
√zを考えていいならそうなりますね
そこはテクニカルかもしれないが、
いいアイデアだと思いますよ

99:132人目の素数さん
20/09/01 17:55:12.95 S0c5RHlN.net
>>81
>フィールズ賞 1954年
>セール:Reformulated and extended some of the main results of complex variable theory in terms of sheaves.
ああ、あんた全然わかってないな
セールのフィールズ賞の主たる受賞理由は
Achieved major results on the homotopy groups of spheres, especially in his use of the method of spectral sequences.
「球体のホモトピー群について、特にスペクトル系列の方法を用いて大きな成果をあげた。」
だよ
あんたが球面のホモトピー群の意義を理解できないだけw
そもそも層の起源の一つは、ルレイのトポロジーの研究にあるんだがね
まさか日本人の岡が層を発明した、と思ってないか?
数学が分かっていれば、岡の発見は層よりも連接性にあることが分かるんだがね
(注:この指摘によって、岡の名誉が損なわれることは全くない)
層は所詮言葉に過ぎない 一方連接性は重要なポイント
どうせ素人の君は連接性とは何で、なぜそれが
代数幾何および複素解析幾何において重要なのかも
まったく理解できてないだろ

100:132人目の素数さん
20/09/01 17:56:35.19 S0c5RHlN.net
>>82
>等角写像に変換群は必要ない。
そりゃそうだ、
等長変換に変換群が必要ないのと同じ
根本的には
「自己同型変換の全体が群をなす」
という点が重要
幾何学的には変換が推移的というのも重要だろう
(なお、推移的の定義は以下を見てくれ)
URLリンク(ja.wikipedia.org)
群 G の X への作用が、
推移的あるいは可移 (transitive) であるとは、
X が空でなく、X の任意の元 x に対して Gx = X が成り立つときに言う。
ここで Gx = {gx | g ∈ G} は x の G による軌道である。
メビウス変換は、リーマン球面における等角同型写像であり
その全体は群をなす だからメビウス幾何(反転幾何)は
エルランゲン・プログラムの幾何といっていい
しかし一般の等角変換はそんな狭い枠を突破している

101:粋蕎
20/09/01 18:06:38.87 Hbfzk2ue.net
>>2
アンタのワーストサイコパスぶりについては黙秘権を行使か

102:132人目の素数さん
20/09/01 19:15:58.29 2qjbTlF5.net
1600
学コン・宿題ボイコット実行委員会@gakkon_boycott 9月1日
#拡散希望
#みんなで学コン・宿題をボイコットしよう
雑誌「大学への数学」の誌上で毎月開催されている学力コンテスト(学コン)と宿題は、添削が雑で採点ミスが多く、訂正をお願いしても応じてもらえない悪質�


103:ネコンテストです。(私も7月号の宿題でその被害に遭いました。)このようなコンテストに参加するのは時間と努力の無駄であり、参加する価値はありません。そこで私は、これ以上の被害者を出さないようにするため、また、出版社に反省と改善を促すために、学コン・宿題のボイコットを呼び掛けることにしました。少しでも多くの方がこの活動にご賛同頂き、このツイートを拡散して頂ければ幸いです。 https://twitter.com/gakkon_boycott/status/1300459618326388737 (deleted an unsolicited ad)



104:132人目の素数さん
20/09/01 21:24:48 n9IeiEve.net
(カッケェェ!…    ∞チュッ!…テ…
…惚レテマゥャロォォゥゥ…ッ!³<)ノ"

=з マタ…★セクハラ★ッピィィッ!

105:132人目の素数さん
20/09/01 21:27:51 n9IeiEve.net
✨✨カッケェェ!✨✨過ギィィッ!
…デ…安価ナンテ…
ツケラレナァァァィィィッ!

106:132人目の素数さん
20/09/01 21:41:03 n9IeiEve.net
🌟✨🌟✨🌟✨🌟✨🌟
✨🌟✨🌟🐑💭✨🌟✨
✨✨✨カッケェェ!✨🌟✨

107:132人目の素数さん
20/09/01 21:43:02 n9IeiEve.net
✨✨眩シ過ギィィッ!✨✨✨
|=з✨✨ォ休ミナサ~ィ!✨✨

108:132人目の素数さん
20/09/02 06:09:01.75 LluQvpDW.net
>>98
安らかに眠れ・・・永遠に

109:132人目の素数さん
20/09/02 06:52:26 LluQvpDW.net
◆yH25M02vWFhP の分かったフリ発言

>>87
「層とかいうような概念が生み出されざるを得なかった
 根本的な因由は,実にn≧2なることに存する.
 n=1ならば問題はなかった.
 n=1ならば,複素直線(即ちガウス平面)の完備化(無限遠点を追加して閉じた面とする)は
 唯一通りよりなくわれわれの慣れている数球面(即ち射影直線)を取ることであるに対し,
 n≧2の場合には複素アフィン空間の完備化は幾通りにも可能である.というように,
 n=1とn≧2とでは根本的な差があるのである.
 n=1ならば閉じていさえすれば,どんな複素解析的なRiemann多様体も
 すべて射影空間に入って了うが,
 n≧2の場合には閉じていても,射影空間(どんなに高次元にとっても)には
 入り得ないものが存在するのである(これは直ぐ円環体で例示される).
 即ちn≧2では最早や射影空間(といっても複素的射影空間であるが)は
 絶対者ではあり得ない.」

「この話で、佐藤超関数を思い出す
 一変数なら、簡単に一変数正則函数との境界上での「差」で定義できるが
 しかし、多変数になると、オリジナルの佐藤理論では、層係数コホモロジー理論を使う必要があった
 これは、是非覚えておくべき
 層の理論は、上記 秋月康夫にあるように、”n≧2”で威力を発揮するということを!!」

◆yH25M02vWFhPに論理はない
ただ言葉や文章の類似だけに頼る連想があるだけ

連想だけで理解できるほど数学は甘くない
細かいことの全てが数学 粗雑な上っ面は数学でもなんでもない

110:現代数学の系譜 雑談
20/09/02 07:49:10.24 gNHKAJku.net
>>91
>そもそも層の起源の一つは、ルレイのトポロジーの研究にあるんだがね
不正確だな(^^;
下記より Leray、”for application to PDE theory”
・1945 Jean Leray publishes work carried out as a prisoner of war, motivated by proving fixed-point theorems for application to PDE theory; it is the start of sheaf theory and spectral sequences.
・1947 Henri Cartan reproves the de Rham theorem by sheaf methods, in correspondence with Andre Weil (see De Rham?Weil theorem).
 Leray gives a sheaf definition in his courses via closed sets (the later carapaces).
・1951 The Cartan seminar proves theorems A and B, based on Oka's work.
岡、不定域イデアルと連接定理
・不定域イデアル:現在の前層にあたるもの
・岡の連接定理:複素多様体上の正則函数の層が環の連接層であるという定理
でした! by チコちゃん(^^;
(参考)
URLリンク(en.wikipedia.org)(mathematics)#History
Sheaf (mathematics)
History
The first origins of sheaf theory are hard to pin down ? they may be co-extensive with the idea of analytic continuation[clarification needed]. It took about 15 years for a recognisable, free-standing theory of sheaves to emerge from the foundational work on


111: cohomology. ・1945 Jean Leray publishes work carried out as a prisoner of war, motivated by proving fixed-point theorems for application to PDE theory; it is the start of sheaf theory and spectral sequences. ・1947 Henri Cartan reproves the de Rham theorem by sheaf methods, in correspondence with Andre Weil (see De Rham?Weil theorem).  Leray gives a sheaf definition in his courses via closed sets (the later carapaces). ・1948 The Cartan seminar writes up sheaf theory for the first time. つづく



112:現代数学の系譜 雑談
20/09/02 07:49:31.41 gNHKAJku.net
>>101
つづき
・1950 The "second edition" sheaf theory from the Cartan seminar: the sheaf space (espace etale) definition is used, with stalkwise structure. Supports are introduced, and cohomology with supports. Continuous mappings give rise to spectral sequences. At the same time Kiyoshi Oka introduces an idea (adjacent to that) of a sheaf of ideals, in several complex variables.
・1951 The Cartan seminar proves theorems A and B, based on Oka's work.
URLリンク(kotobank.jp)
不定域イデアル
世界大百科事典内の不定域イデアルの言及
【層】より
…もともとは,1940年代後半に岡潔が多変数関数論の研究の中で,現在の前層にあたるものを利用した。岡はそれを不定域イデアルと呼んだが,
他方同じころ,これとは独立にルレーJ.Leray(1906‐ )が同様なものを考えた。その直後,H.カルタンらが層の一般論を展開し,多変数関数論に有効に利用した。…
※「不定域イデアル」について言及している用語解説の一部を掲載しています。
出典|株式会社平凡社世界大百科事典 第2版について
URLリンク(ja.wikipedia.org)
連接層
特に代数幾何学や複素多様体やスキームの理論では、連接層(れんせつそう、英: coherent sheaf)とは、底空間の幾何学的性質に密接に関連する、扱いやすい性質をもった特別な層である。
連接層は有限ランクのベクトルバンドルや局所自由層の一般化とみなすことができる。ベクトルバンドルとは違い、連接層のなす圏は、核(英語版)や余核や有限の直和といった操作で閉じている「素晴らしい」圏である。準連接層(じゅんれんせつそう、英:quasi-coherent sheaf)は連接層における有限性の仮定をはずしたもので、ランク無限の局所自由層を含んでいる。
代数幾何学や複素解析の多くの結果や性質が、連接層、準連接層やそれらのコホモロジーのことばで定式化される。
連接層の例
・岡の連接定理は、複素多様体上の正則函数の層が環の連接層であるという定理である[3] 。
つづく

113:現代数学の系譜 雑談
20/09/02 07:50:33.85 gNHKAJku.net
>>102
つづき
URLリンク(en.wikipedia.org)
Leray spectral sequence
In mathematics, the Leray spectral sequence was a pioneering example in homological algebra, introduced in 1946[1][2] by Jean Leray. It is usually seen nowadays as a special case of the Grothendieck spectral sequence.
URLリンク(en.wikipedia.org)
Spectral sequence
In homological algebra and algebraic topology, a spectral sequence is a means of computing homology groups by taking successive approximations. Spectral sequences are a generalization of exact sequences, and since their introduction by Jean Leray (1946), they have become important computational tools, particularly in algebraic topology, algebraic geometry and homological algebra.
URLリンク(en.wikipedia.org)
Spectral sequence
In homological algebra and algebraic topology, a spectral sequence is a means of computing homology groups by taking successive approximations. Spectral sequences are a generalization of exact sequences, and since their introduction by Jean Leray (1946), they have become important computational tools, particularly in algebraic topology, algebraic geometry and homological algebra.
de Rham:The influence of de Rham’s theorem was particularly great during the development of Hodge theory and sheaf theory.
URLリンク(en.wikipedia.org)
Georges de Rham (French: [d??am]; 10 September 1903 ? 9 October 1990) was a Swiss mathematician, known for his contributions to differential topology.
つづく

114:現代数学の系譜 雑談
20/09/02 07:51:05.59 gNHKAJku.net
>>103
つづき
Mathematics research
In 1931 he proved de Rham's theorem, identifying the de Rham cohomology groups as topological invariants. This proof can be considered as sought-after, since the result was implicit in the points of view of Henri Poincare and Elie Cartan. The first proof of the general Stokes' theorem, for example, is attributed to Poincare, in 1899. At the time there was no cohomology theory, one could reasonably say: for manifolds the homology theory was known to be self-dual with the switch of dimension to codimension (that is, from Hk to Hn?k, where n is the dimension). That is true, anyway, for orientable manifolds, an orientation being in differential form terms an n-form that is never zero (and two being equivalent if related by a positive scalar field). The duality can be reformulated, to great advantage, in terms of the Hodge dual?intuitively, 'divide into' an orientation form?as it was in the years succeeding the theorem. Separating out the homological and differential form sides allowed the coexistence of 'integrand' and 'domains of integration', as cochains and chains, with clarity. De Rham himself developed a theory of homological currents, that showed how this fitted with the generalised function concept.
The influence of de Rham’s theorem was particularly great during the development of Hodge theory and sheaf theory.
つづく

115:現代数学の系譜 雑談
20/09/02 07:51:25.14 gNHKAJku.net
>>104
つづき
URLリンク(en.wikipedia.org)
De Rham cohomology
In mathematics, de Rham cohomology (after Georges de Rham) is a tool belonging both to algebraic topology and to differential topology, capable of expressing basic topological information about smooth manifolds in a form particularly adapted to computation and the concrete representation of cohomology classes. It is a cohomology theory based on the existence of differential forms with prescribed properties.
The integration on forms concept is of fundamental importance in differential topology, geometry, and physics, and also yields one of the most important examples of cohomology, namely de Rham cohomology, which (roughly speaking) measures precisely the extent to which the fundamental theorem of calculus fails in higher dimensions and on general manifolds.
??Terence Tao, Differential Forms and Integration[1]
URLリンク(en.wikipedia.org)
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence.
Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group.
(引用終り)
以上

116:現代数学の系譜 雑談
20/09/02 07:55:46.09 gNHKAJku.net
>>103 ダブり訂正
URLリンク(en.wikipedia.org)
Spectral sequence
In homological algebra and algebraic topology, a spectral sequence is a means of computing homology groups by taking successive approximations. Spectral sequences are a generalization of exact sequences, and since their introduction by Jean Leray (1946), they have become important computational tools, particularly in algebraic topology, algebraic geometry and homological algebra.
URLリンク(en.wikipedia.org)
Spectral sequence
In homological algebra and algebraic topology, a spectral sequence is a means of computing homology groups by taking successive approximations. Spectral sequences are a generalization of exact sequences, and since their introduction by Jean Leray (1946), they have become important computational tools, particularly in algebraic topology, algebraic geometry and homological algebra.
これ、コピーダブり
一つ消す(^^;

117:現代数学の系譜 雑談
20/09/02 07:59:56.35 gNHKAJku.net
>>100
あんた、それでオチコボレたと思うよ
>連想だけで理解できるほど数学は甘くない
>細かいことの全てが数学 粗雑な上っ面は数学でもなんでもない
たかが、小学生で遠山先生の「数学入門」程度を読んで、数学にあこがれ
Fラン数学科に入った
難しい数学を、いっぱい勉強するんだと考えたのだろう
数学を難しく難しく考えようとした
それでオチコボレになったと思う
一流数学者は、難しいことを、真に理解し、易しくする
オチコボレは、難しいことを、より難しく考えて、落ちこぼれる

118:現代数学の系譜 雑談
20/09/02 10:06:39.22 pPZpUNUZ.net
>>107 補足
>一流数学者は、難しいことを、真に理解し、易しくする
>オチコボレは、難しいことを、より難しく考えて、落ちこぼれる
神脳 河野玄斗 数学勉強法:”理解”がキーワード
確かに、


119:現代数学は極めて抽象化されている だが、抽象化された概念を自分なりに消化する、これが大事なのだよ 前スレ(3) より https://rio2016.5ch.net/test/read.cgi/math/1595166668/194-195 (再録) (参考) https://ja.wikipedia.org/wiki/%E6%B2%B3%E9%87%8E%E7%8E%84%E6%96%97 河野玄斗 http://kosodatedoctor.ハテナブログ/entry/2019/06/05/173848 Dr.よつばの医師夫婦育児日記 2019-06-05 読書録125 東大医学部在学中に司法試験も一発合格した僕のやっているシンプルな勉強法 ネタバレ (抜粋) ※勉強は、幹から押さえることが重要※ →枝葉にこんつめて失敗することがない。 →メリハリづけ、優先順位をつけることで効率UP ※人に教えることが最良のアウトプット※ →人に教えるつもりで、押さえるべき重要部分を意識する。 →自分の言葉でそしゃくして、 わかりやすく置き換えられれば理解できてる。 「勉強は、 全体像を常に意識して一区切りしたら人に教えるノリで要約してい く。 暗記科目でも、まずは理解に専念して全体像をつかむ。 説明すると、頭の情報が自分の言葉で言語化されるし、 要約するとこれだけか、とわかる。 ※読み飛ばし勉強法※ 一度教科書を読んだら、すぐにもう一度30秒ほどで読む。 (8)独学の意識を持つ 教わるのではなく、自分から勉強する。独学が最も効率的。 講義はあくまで独学を補助するツール。 まず独学して、わからないところだけ先生に聞く。 講義は自分に必要な最低限にとどめ、まずは自習時間を確保。 ■■高校大学受験を完全攻略する■■ ■数学■ (2)数学の勉強法 1、基本問題はパターンを攻略する 問題を解く際に常にその抽象論を意識する。 解き方丸暗記ではなく、 解き方の背景にある理屈を説明できるように。 (3)数学の楽しさ 沢山ある基本問題の背景に一貫した理屈を見つけたとき、 点が線になり世界が広がる感覚 →複数の問題の根底にある抽象論を抽出するのが大切



120:現代数学の系譜 雑談
20/09/02 10:18:06.61 pPZpUNUZ.net
>>108
>神脳 河野玄斗 数学勉強法:”理解”がキーワード
>確かに、現代数学は極めて抽象化されている
>だが、抽象化された概念を自分なりに消化する、これが大事なのだよ
グロタンディークは、抽象化が得意だった
抽象的な数学を抽象的なまま考えたのではないかと言われる
だが、それを真似する必要はない
自分は、自分に合った勉強法があるはずだ
”(3)数学の楽しさ
沢山ある基本問題の背景に一貫した理屈を見つけたとき、 点が線になり世界が広がる感覚”(>>108
佐藤超関数>>87の「n=1とn≧2とでは根本的な差がある」(>>87 秋月康夫)
"層係数コホモロジー理論を使う必要があった(下記、片岡 清臣)"ってところで繋がっているのです
おサルは、そういう勉強をしてこなかったみたいだな
グロタンディークのまね、抽象的な数学を抽象的なまま考えようとした、身の程知らず
たかが、小学生で遠山先生の「数学入門」程度を読んだ程度で、舞い上がるサル
それが、数学落ちこぼれの原因ですよ(^^;

121:132人目の素数さん
20/09/02 17:08:04.82 md+DGt+8.net
小平邦彦が層について「こんなに簡単なものがなぜこんなに役に立つのか分からない」と言っていた話は有名。
もし、1次元2次元だとか、幾何学的に明確な理由があるなら、小平がそんな発言するわけないだろう。

122:132人目の素数さん
20/09/02 18:48:05.80 LluQvpDW.net
>>101-102
>The first origins of sheaf theory are hard to pin down –
>they may be co-extensive with the idea of analytic continuation
>[clarification needed]
(翻訳)
「層理論の最初の起源は、なかなか突き止められない。
 解析連続の考え方と共存しているかもしれない
 [明確化が必要]」
つまり、記載に対して「明確化が必要」と注記がされている
そして、実際「解析接続云々」は誤解によるものである
(削除が妥当)
>・不定域イデアル:現在の前層にあたるもの
じゃ、層ではないね
>・岡の連接定理:複素多様体上の正則函数の層が環の連接層であるという定理
重要なのは連接性 層に関連付けたのはアンリ・カルタン
あんた、やっぱ漫然とコピペしてるだけで、中身全然わかってないね
定義読まない、読んでもワケワカラン
それじゃ数学は無理 あきらめろって
P.S.
>(^^;
その汗は冷や汗だろ ぬぐえよw

123:132人目の素数さん
20/09/02 18:49:35.13 LluQvpDW.net
>>103-106
「任意の正方行列は逆行列を持つ!」と思い込んでた粗雑な君に
スペクトル系列なんか理解できないからあきらめな
あんた、ド・ラム コホモロジーとかいう前に、
そもそも微分形式知らんやろ
●微分形式
URLリンク(ja.wikipedia.org)
そんでもってグリーンの定理もガウスの定理(発散定理)もストークスの定理も知らんやろ
●グリーンの定理
URLリンク(ja.wikipedia.org)
●発散定理
URLリンク(ja.wikipedia.org)
●ストークスの定理
URLリンク(ja.wikipedia.org)
(注:微分形式だとグリーンの定理も発散定理も全部ストークスの定理だが、一応書いといた)
さらにダメ押しで、ポアンカレの補題とか全然知らんやろ
●ポアンカレの補題
URLリンク(ja.wikipedia.org)
そんなド素人じゃ、ド・ラム コホモロジーとか興味持つだけ無駄 諦めろ
●ド・ラームコホモロジー
URLリンク(ja.wikipedia.org)

124:132人目の素数さん
20/09/02 18:51:02.59 LluQvpDW.net
>>107
あんた、クヤシイのか?w
まず、遠山啓の「数学入門(上)(下)」くらいは読んどけ
そこすらわからんようじゃ数学は無理
(だいたい小学生~高卒レベル)
大学に受からん奴はFランもうらやましいらしいw
だが、俺はJ西大とかそういうレベルの大学の出身ではない
安達はN大だとわめいてるがそれもあたってない
(もっともN大の数学科でも、安達よりははるかに数学が分かってるだろう)
>難しい数学を、いっぱい勉強するんだと考えたのだろう
>数学を難しく難しく考えようとした
そんなマゾはいないよw
誰だって易しいほうがいいに決まってる
しかしながら、今の数学はあんたのような素人が
3分以内で分かるほど易しいネタは一つもない
例えば、代数幾何の問題意識なんて
あんたのような素人には到底理解できない
あんたは線形代数すら正しく理解できないんだからな
行列のランクも行列式も知らないとか
理系大卒じゃありえねぇし
>それでオチコボレになったと思う
人が見つけた定理の証明を理解するのと
自分で命題を見つけて証明するのは、
全然難しさが違うんだよ

125:132人目の素数さん
20/09/02 18:51:39.26 LluQvpDW.net
>>108
>神脳 河野玄斗
>東大医学部在学中に司法試験も一発合格した僕のやっているシンプルな勉強法
あんた、そいつを見習って医者でも弁護士でもめざせばいいじゃん
そのほうがはっきり目標ができていいぞ
あんたの場合、数学を学ぶ目標がはっきりしてないから
粗雑な大嘘を垂れ流すイタイタシイ奴に成り下がるわけだ
ちなみに貴様が崇め奉る東大医学部君、なかなかのサイコパスだぜw
「『週刊文春』において女性スキャンダルが報じられる。
 文春によると、💩はある女性と出会い
 その日のうちに性交渉を行い、その女性が妊娠する。
 女性が💩に妊娠したことを告白すると、💩は
 「認知はできるけれども生むのは難しい」
 「今はまだ脳が発達していないから生きているものではない」
 「悲しいとかの感情があるわけじゃない」
 と言い、その女性は中絶手術を行った。
 後に💩には新しい恋人ができ、中絶手術を行った女性と最後に会おうという約束について
 💩は「会えない」と連絡をし、警察にその女性の保護を依頼した。
 そのため、女性は💩と連絡をする際には弁護士を通じて連絡するという趣旨の
 上申書を警察署で書かされたという。」
「💩は文春の取材に対して、妊娠と中絶の経緯を認めた上で、
 「彼女を傷つけてしまった事に対して、深く反省をしております」
 とコメントした。」
たぶんこんな感じでいったんだろうな
「ちっ、反省してま~す」
💩のくせにとんだ*ん*んやろうだなw

126:132人目の素数さん
20/09/02 18:54:21.51 LluQvpDW.net
>>109
>沢山ある基本問題の背景に一貫した理屈を見つけたとき、
>点が線になり世界が広がる感覚
そもそも佐藤超関数は多変数解析関数論使ってるんだから
関係あるの当たり前じゃん 馬鹿じゃね?

127:132人目の素数さん
20/09/02 18:57:17.76 LluQvpDW.net
>>110
層自体に大した意味があるわけではない
正則函数の性質を層の性質と取り違える◆yH25M02vWFhP

128:現代数学の系譜 雑談 ◆yH25M02vWFhP
20/09/02 23:36:40 gNHKAJku.net
>>77 補足

海城 (春木先生):”クラインの「エルランゲン・プログラム」
これまでいろいろな非ユークリッド幾何の例を見てきましたが、それらとユークリッド幾何学をすべてまとめて射影幾何学の一部としてとらえる統一理論です。
そのための道具として図形の動かし方をまとめた「変換群」という考え方が登場しました。”
”「幾何学とは何か」というある種哲学的な問いに対する一つの答えを与えたものです。
このように,群とその群が作用する空間を組にして幾何学的対象として特徴づけたものをクライン幾何学といいます。
 このエルランゲン・プログラムにより,その当時存在したいろいろな幾何学のほとんどは,射影幾何学に対してある種の制限をかけたものとしてとらえることができます。そういった意味で,射影幾何学は当時では万能の幾何学でした。”
”一般に n 次元リーマン多様体上に作用し,かつ計量を不変
に保つような変換群は存在しません。よって,クライン幾何の枠の中には入らないものでした。
カルタンはクライン幾何を発展させて接続の理論を考えだし,その思想を多様体上の幾何学の中に取り込みました。”

(参考)
1)海城 数学科リレー講座 エルランゲン・プログラム
URLリンク(www.kaijo.ed.jp)
海城
URLリンク(www.kaijo.ed.jp)
数学科リレー講座 最終日 2013.08.24 海城
2013.08.24 海城
月曜日から始まったリレー講座もいよいよ最終日になりました。今日はクラインの「エルランゲン・プログラム」についてです。これまでいろいろな非ユークリッド幾何の例を見てきましたが、それらとユークリッド幾何学をすべてまとめて射影幾何学の一部としてとらえる統一理論です。
そのための道具として図形の動かし方をまとめた「変換群」という考え方が登場しました。
途中で小澤先生に、2年前のガロア理論の講座をもとにして「群」の基本について10分ほど講義をしていただきました。
その後合同変換、アフィン変換、射影変換のイメージを伝えるところを重点的に話しました。
最後に射影変換群の部分群として球面や双曲面を不変にする群が現れてメデタシメデタシ、のはずなのですが、行列表示からは駆け足だったのでどうだったでしょうか…?
(春木教諭)

つづく

129:現代数学の系譜 雑談 ◆yH25M02vWFhP
20/09/02 23:37:37 gNHKAJku.net
>>117
つづき

URLリンク(www.kaijo.ed.jp)
平成 25 年度 数学科リレー講座 6 日目 2013.08.24 海城
エルランゲン・プログラム 春木 淳・小澤嘉康

P3
クライン (1849 ? 1925


130:) はリー群で有名なリーと出会い,ともに幾何学に初心があったこともあり,意気投合しました。 2 人はガロア理論を解読し終えたばかりのジョルダンの影響を受け,ガロアが思いもよらなかったであろう幾何学の分野へ群論を拡張させました。 1872年,クラインは23歳でエルランゲン大学の教授に招聘され,その就任講演で,幾何学的性質とは変換群 G の作用で不変に保たれる性質という考え方を示しました。  これは後にエルランゲン・プログラムと呼ばれ,「幾何学とは何か」というある種哲学的な問いに対する一つの答えを与えたものです。 このように,群とその群が作用する空間を組にして幾何学的対象として特徴づけたものをクライン幾何学といいます。  このエルランゲン・プログラムにより,その当時存在したいろいろな幾何学のほとんどは,射影幾何学に対してある種の制限をかけたものとしてとらえることができます。そういった意味で,射影幾何学は当時では万能の幾何学でした。 P28 5 最後に  すべての幾何がクラインの幾何の考え方によって統一されたかのように思われました。  しかし,リーマンが 1854 年に提唱した多様体上の幾何学(リーマン幾何学,微分幾何学)において, 一般に n 次元リーマン多様体上に作用し,かつ計量を不変に保つような変換群は存在しません。 よって,クライン幾何の枠の中には入らないものでした。 カルタンはクライン幾何を発展させて接続の理論を考えだし,その思想を多様体上の幾何学の中に取り込みました。 そして,この多様体上の幾何学はその後発展をし,アインシュタインの一般相対性理論に大きな影響を及ぼしています。 (引用終り) つづく



131:現代数学の系譜 雑談 ◆yH25M02vWFhP
20/09/02 23:38:16 gNHKAJku.net
>>118
つづき

2)”カルタンとワイルは,レヴィ・チヴィタが考案した接続の考え方を用いて,エルランゲン・プログラムとリーマン幾何学をより高い見地から統一しました.”
URLリンク(www.mathematics-pdf.com)
非ユークリッド幾何学について よしいず 2003-2011
(抜粋)
エルランゲン・プログラム
 1872年,クラインは,空間とその空間における変換からなる群を与えたとき,その群に属するすべての変換によって不変なものとして,これまでの多くの幾何学が特徴づけられることを指摘しました.この群論によって幾何学を統合するという考え方はエルランゲン・プログラムと呼ばれています.例えばユークリッド幾何学は,距離が与えられた平面と長さを変えない変換からなる群が与えられたものと考えることができます.一般に,さまざまな空間や変換群を与えることにより数多くの幾何学が得られます.
 しかし,エルランゲン・プログラムは万能ではなく,リーマン幾何学はその例外であることが知られています.その後,カルタンとワイルは,レヴィ・チヴィタが考案した接続の考え方を用いて,エルランゲン・プログラムとリーマン幾何学をより高い見地から統一しました.
関連書籍
小林昭七(著): ユークリッド幾何から現代幾何へ,日本評論社,1990
(引用終り)

3)接続 (幾何学):”カルタンはクラインのエルランゲン・プログラムの局所化を試みていたのである。
1920年代にカルタンは、微分形式を用いた記述によって、現在カルタン接続(英語版)と呼ばれるものを発見していった[7]。
カルタンのこの仕事により、リーマン幾何学だけでなく、共形幾何学(英語版)、射影幾何学などのさまざまな幾何学を研究するための基礎が築かれた。”
URLリンク(ja.wikipedia.org)(%E5%B9%BE%E4%BD%95%E5%AD%A6)
接続 (幾何学)

つづく

132:現代数学の系譜 雑談 ◆yH25M02vWFhP
20/09/02 23:39:18 gNHKAJku.net
>>119
つづき

接続(せつぞく、英: connection)の考え方により、曲線や曲線の族にそって平行で整合性を持つデータの移動の考え方を詳しく示すことができる。 現代の幾何学には多くの種類の接続の考え方があり、移動したいデータが何であるかに依存する。例えば、アフィン接続は接続の最も基本的なタイプであるが、この接続はある曲線に沿ってある点から別な点へ多様体の接ベクトルを移動することを意味する。アフィン接続は、典型的には共変な微分形式として与えられ、ベクトル場の方向微分、つまり与えられた方向へのベクトル場の無限小移動をとることを意味する。

現代の幾何学では接続は非常に重要である。大きな理由は、接続によりある点での局所幾何学と別な点での局所幾何学を比較することが可能となるからである。微分幾何学は、接続の考え方のいくつかの変形を持っている。大きなグループ分けをすると 2つのグループがあり、局所の理論と無限小の理論である。

接続の歴史
接続は、歴史的にはまずリーマン幾何学において見出された。接続の概念のはじまりをどこに置くかについては諸説あるが、クリストッフェルの研究をその淵源とする見方がある[注釈 1]。クリストッフェルは1869年の論文で、座標変換の導関数が満たす関係式の研究を通じ、現在クリストッフェル記号とよばれる量を発見した[3]。これを用いて、リッチはその学生であるレヴィ=チヴィタとともに、彼らが絶対微分学(英語版)とよんだ、共変微分を用いる今でいうテンソル解析の計算の手法をつくりあげた[4]。

レヴィ=チヴィタはまた、1916年に、リーマン幾何学における接ベクトルの平行移動の概念を発見し、これが共変微分によって記述されることをみつけた[5](レヴィ=チヴィタ接続の名前はこのことによる)。1918年にワイルはそれを一般化して、アフィン接続の概念に到達した[6][注釈 2]。ここで「接続」にあたる語(独: Zusammenhang)がはじめて使用された[要出典]。

つづく

133:現代数学の系譜 雑談 ◆yH25M02vWFhP
20/09/02 23:39:51 gNHKAJku.net
>>120
つづき

それからすぐに、エリ・カルタンによって、さらなる一般化が行われた。
カルタンはクラインのエルランゲン・プログラムの局所化を試みていたのである。
1920年代にカルタンは、微分形式を用いた記述によって、現在カルタン接続(英語版)と呼ばれるものを発見していった[7]。カルタンのこの仕事により、リーマン幾何学だけでなく、共形幾何学(英語版)、射影幾何学などのさまざまな幾何学を研究するための基礎が築かれた。

4)幾何学とは?
URLリンク(ja.wikipedia.org)
幾何学
単に幾何学と言うと、ユークリッド幾何学のような具体的な平面や空間の図形を扱う幾何学をさすことが多く、一般にも馴染みが深いが[3]、対象や方法、公理系などが異なる多くの種類の幾何学が存在し[1]、現代においては微分幾何学や代数幾何学、位相幾何学などの高度に抽象的な理論に発達・分化している[2][3]。

現代の幾何学
クラインは幾何学に群論を応用することによって、空間Sの変換群Gによって、変換で不変な性質を研究する幾何学を提唱した。これをエルランゲン・プログラム[22]というが、この手法で運動群がユークリッド幾何学を定めるように、射影幾何学、アフィン幾何学、共形幾何学を統一化することができる[6]。
更に19世紀末にはポアンカレによって、連続的な変化により不変な性質を研究する位相幾何学が開拓された[6]。
代数曲線・曲面や代数多様体が起源である代数幾何学[6]は高度に発達し、日本でもフィールズ賞受賞者も多く盛んに研究されている。
またミンコフスキーによる凸体の研究は数論幾何学の道を開いた[6]。

つづく

134:現代数学の系譜 雑談 ◆yH25M02vWFhP
20/09/02 23:40:46 gNHKAJku.net
>>121
つづき

20世紀前半には多様体は数学的に厳密に定式化され、ワイル、E・カルタンらにより多様体上の幾何学や現代微分幾何学が盛んに研究された[6]。リーによって導入されたリー群によって、これらの様々な幾何学を不変にする変換群が与えられたが、カルタンはリー群を応用して接続の概念を導入し接続幾何学を完成させ[3]、これらの幾何学を統一化することに成功した[6]。これはリーマンによる多様体と、クラインによる変換群の考えを統一化したとも理解できる[6]。これは現代では素粒子物理学などの物理学の諸分野でも常識となっている。

現代数学と幾何学
現代数学では幾何学は代数学や解析学などの数学全般に広範囲に浸透しているため、これらと明確に区別して幾何学とはなにかということを論ずるのは難しいが、しかしながら図形や空間の直感的把握やそのような思考法は先端分野の研究においても重要性を失っていないといえる[6]。

5)Cartan ”KLEIN-CARTAN プログラム”(エルランゲンの発展形)
URLリンク(www.nara-wu.ac.jp)
第14回岡シンポジウム(2015.12.05-06)
URLリンク(www.nara-wu.ac.jp)
巾零幾何・巾零解析の展開-幾何と微分方程式に対するKLEIN-CARTAN プログラム-森本 徹 2015
P2
Espace generalise.
一般相対性理論の波を受けて 1922年 Cartanは espace generalise の考えを発表し幾何の新しい枠組を提唱した (17)
今日 Cartan 接続を備えた空間あるいは Cartan 幾何と呼ばれるものである.その枠組は Klein 幾何を含むと同時に,それまで Klein 幾何の枠外に孤立していた Riema


135:nn 幾何をもその枠組に取り入れ,さらにユークリッド幾何の変形が Riemann 幾何であるように,射影幾何や Mobius幾何などの Klein 幾何の変形を自然にその枠組に取りいれるものである.さらにその枠組において Klein 幾何と同様に群が基本的な役割を演じるのである. Klein を遥かに超えた vaste synthese を達成したとCartan は誇らしげに述べている(81). (引用終り) つづく



136:現代数学の系譜 雑談 ◆yH25M02vWFhP
20/09/02 23:42:52 gNHKAJku.net
>>122
つづき

要するに
海城の生徒なら、”クラインの「エルランゲン・プログラム」、「幾何学とは何か」というある種哲学的な問いに対する一つの答えを与えたもの
エルランゲン・プログラムその当時存在したいろいろな幾何学のほとんどは,射影幾何学に対してある種の制限をかけたものとしてとらえることがでる。そういった意味で,射影幾何学は当時では万能の幾何学”
”カルタンはクライン幾何を発展させて接続の理論を考えだし,その思想を多様体上の幾何学の中に取り込みました。”
ってこと、知っているのですw(^^

エルランゲン・プログラムから、発展して
(幾何学 wikipedia より)
「カルタンはリー群を応用して接続の概念を導入し接続幾何学を完成させ[3]、これらの幾何学を統一化することに成功した[6]。これはリーマンによる多様体と、クラインによる変換群の考えを統一化したとも理解できる[6]。これは現代では素粒子物理学などの物理学の諸分野でも常識となっている。」
「現代数学では幾何学は代数学や解析学などの数学全般に広範囲に浸透しているため、これらと明確に区別して幾何学とはなにかということを論ずるのは難しいが、しかしながら図形や空間の直感的把握やそのような思考法は先端分野の研究においても重要性を失っていないといえる[6]。」
です。

そして”conformal transformation”(=等角写像 >>85)は、2次元に限らない
だが、奇跡的に 2次元”conformal transformation”は、1変数正則関数論と一致します

ですが、”conformal transformation”の視点は、ある図形、例えば複素平面の円が、”conformal transformation”によって、どういう図形になるのかというところに力点があるのです
1変数正則関数論は、関数自身が研究の対象なのです
両者は、切り口あるいは視点が違うのです!

よって”conformal transformation”(=等角写像 >>85)は、
幾何学的視点から考えるのが正解なのです
これは 海城の生徒なら、すぐ分かる話です(^^
以上

137:132人目の素数さん
20/09/03 06:11:20.88 jFhKC8Ah.net
あんた わけもわからずやたらと文章食うと腹壊すよ
まず、等角写像というだけでは射影幾何学の制限にならんよ
メビウス変換のようにリーマン球面上で1対1対応するとか制限をつけないと
(メビウス幾何は1次元複素射影幾何)
次に、君、接続がなんだか理解してる?
君って必ずといっていいほど定義以外の文章ばかりコピペして
肝心の定義は略すよね?逆だよね まっさきに定義を書くよね
なんで定義書かないの?読んでも理解できないの?
だったら君には数学は無理だからきれいさっぱり諦めたら
往生際悪いよ
最後にconformal transformationは普通、共形変換といいますが
2次元の場合、1変数正則関数論と一致します
で、君、なぜそうなるか分かってる?
分かってないよね?君、大学で複素関数論、全然学んでないよね?
あ、そもそも大学行ってないのか
だってεδも分かってないし実数の定義も知らないし
行列のランクも行列式も全然知らなかったもんね
そんな大学生 理工系なら皆無だよね
URLリンク(ja.wikipedia.org)


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch