20/09/11 07:49:56.01 dt7uB+gp.net
>>324
つづき
P11
1.1.1.4 [参考] 「矢印」ではないベクトルについて
1.1.1.1 節でも触れたとおり、ベクトル空間(線形空間)という概念は「矢印」を超えて拡張
できる。数学では、「矢印」のような具体的なイメージのあるものを用いてものごとを定義して
しまうと、拡張性が制限されることになるのでできるだけ避けようとする。そこで、1.1.1.1 節
の最後の方で説明したように、簡単に言えば、和と定数倍が定義できるということだけを抽象
的にベクトル空間の定義として用いる。さらに内積が定義されるベクトル空間のことを内積空
間という。以下に「矢印」ではない「ベクトル」の例を2つ挙げる。
1.1.1.4.1 ベクトルとしての行列 m × n 行列が作る空間 M(m, n) は mn 次元の線型空間で
ある。和と定数倍が自然に定義されるからである。基底としては、第 i 行、第 j 列の成分のみ
が 1 でそれ以外の成分が 0 という行列 eij を取ることができる。
この意味では、行列もベクトルだという言い方ができる。しかし、このように行列をベクト
ルと言ってしまうと、座標変換行列やテンソルもベクトルということになって、本講義では大
混乱を招くことになってしまう。本講義では「ベクトル」は「矢印」しか指さないということ
にする。本講義(テンソル解析)の用語では、座標変換行列はベクトルではなく、後述のよう
にベクトルは1階のテンソルともいえるが、それ以外のテンソルはベクトルではない。
1.1.1.4.2 ベクトルとしての関数 関数もベクトルだと考えることもできる(詳しくは、関数
解析の教科書を参照すること)。本講義でも、第2章の1回目でそのような考え方が出てくる。
関数にも和やスカラー倍が定義できるし、内積とか座標変換も考えられる。関数が作るベクト
ル空間を関数空間と言う。
1.1.2 テンソルとは何だろうか?
テンソルとは、数学的にはどういう量であるべきだろうか?ここでは、具体的な例として地
下水の流れに関係する浸透率テンソルと岩石の変形に関係する変形勾配テンソルの2つを導入
することからテンソルが持っている性質を考えてゆくことにする。
つづく