純粋・応用数学(含むガロア理論)4at MATH
純粋・応用数学(含むガロア理論)4 - 暇つぶし2ch284:現代数学の系譜 雑談
20/09/08 11:59:11.02 eqr8yurO.net
>>247
つづき
URLリンク(ja.wikipedia.org)
外微分
可微分多様体上、外微分(がいびぶん、英: exterior derivative)は関数の微分の概念を高次の微分形式に拡張する。外微分はエリ・カルタンによって最初に現在の形式で記述された。それによってベクトル解析のストークスの定理、ガウスの定理、グリーンの定理の自然な、距離に依存しない一般化ができる。
k 形式を無限小 k 次元平行面体を通る流量を測るものと考えれば、その外微分を (k + 1)-平行面体の境界を通る正味の流れを測るものと考えることができる。
目次
4 さらなる性質
4.1 閉形式と完全形式
4.2 ド・ラームコホロジー
4.3 自然性
5 ベクトル解析における外微分
5.1 勾配
5.2 発散
5.3 回転
5.4 grad, curl, div, およびラプラシアンの不変公式
(引用終り)
以上


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch