20/09/06 21:29:30.12 P1Kztm36.net
>>219
つづき
カルタンの定理 B:すべての p > 0 に対して H?p(X, F) = 0 である。
代数幾何学における連接層に対する同様の性質は、X がアフィンスキームである場合に、Serre (1957) によって示されている。定理 B と類似のそのような定理は、以下のように記述される (Hartshorne 1977, Theorem III.3.7):
定理 B(スキーム論的表現):X をアフィンスキームとし、F を X 上のザリスキー位相に対する OX-加群の準連接層とする。このとき、すべての p > 0 に対して H?p(X, F) = 0 である。
より深い段階では、これらの定理はGAGAの定理を証明するためにジャン=ピエール・セールによって利用された。
カルタンの定理 B は、複素多様体 X 上のすべての連接層 F(resp. ネータースキーム X 上の準連接層 F)に対して H?1(X, F) = 0 であるなら、X はシュタイン多様体(resp. アフィン多様体)であるという明確な結果である。(Serre 1956) (resp. (Serre 1957) and Hartshorne (1977, Theorem III.3.7)) を参照されたい。
(引用終り)
以上