純粋・応用数学(含むガロア理論)4at MATH
純粋・応用数学(含むガロア理論)4 - 暇つぶし2ch166:現代数学の系譜 雑談
20/09/04 10:52:16.49 WA43t50K.net
>>147
つづき
Background
Material in the paper dates from Grothendieck's year at the University of Kansas in 1955?6. Research there allowed him to put homological algebra on an axiomatic basis, by introducing the abelian category concept.[5][6]
A textbook treatment of homological algebra, "Cartan?Eilenberg" after the authors Henri Cartan and Samuel Eilenberg, appeared in 1956. Grothendieck's work was largely independent of it. His abelian category concept had at least partially been anticipated by others.[7] David Buchsbaum in his doctoral thesis written under Eilenberg had introduced a notion of "exact category" close to the abelian category concept (needing only direct sums to be identical); and had formulated the idea of "enough injectives".[8] The Tohoku paper contains an argument to prove that a Grothendieck category (a particular type of abelian category, the name coming later) has enough injectives; the author indicated that the proof was of a standard type.[9] In showing by this means that categories of sheaves of abelian groups admitted injective resolutions, Grothendieck went beyond the theory available in Cartan?Eilenberg, to prove the existence of a cohomology theory in generality.[10]
Later developments
After the Gabriel?Popescu theorem of 1964, it was known that every Grothendieck category is a quotient category of a module category.[11]
The Tohoku paper also introduced the Grothendieck spectral sequence associated to the composition of derived functors.[12] In further reconsideration of the foundations of homological algebra, Grothendieck introduced and developed with Jean-Louis Verdier the derived category concept.[13] The initial motivation, as announced by Grothendieck at the 1958 International Congress of Mathematicians, was to formulate results on coherent duality, now going under the name "Grothendieck duality".[14]
(引用終り)
以上


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch