純粋・応用数学(含むガロア理論)4at MATH
純粋・応用数学(含むガロア理論)4 - 暇つぶし2ch144:現代数学の系譜 雑談
20/09/03 17:22:26.78 k0Z0EEBv.net
>>129
つづき
Framed cobordism
Until the advent of more sophisticated algebraic methods in the early 1950s (Serre) the Pontrjagin isomorphism was the main tool for computing the homotopy groups of spheres.
Homotopy groups of spheres are closely related to cobordism classes of manifolds. In 1938 Lev Pontryagin established an isomorphism between the homotopy group πn+k(Sn) and the group Ωframed
k(Sn+k) of cobordism classes of differentiable k-submanifolds of Sn+k which are "framed", i.e. have a trivialized normal bundle.
Until the advent of more sophisticated algebraic methods in the early 1950s (Serre) the Pontrjagin isomorphism was the main tool for computing the homotopy groups of spheres.
In 1954 the Pontrjagin isomorphism was generalized by Rene Thom to an isomorphism expressing other groups of cobordism classes (e.g. of all manifolds) as homotopy groups of spaces and spectra. In more recent work the argument is usually reversed, with cobordism groups computed in terms of homotopy groups (Scorpan 2005).
Finiteness and torsion
In 1951, Jean-Pierre Serre showed that homotopy groups of spheres are all finite except for those of the form πn(Sn) or π4n?1(S2n) (for positive n), when the group is the product of the infinite cyclic group with a finite abelian group (Serre 1951). In particular the homotopy groups are determined by their p-components for all primes p. The 2-components are hardest to calculate, and in several ways behave differently from the p-components for odd primes.
In the same paper, Serre found the first place that p-torsion occurs in the homotopy groups of n dimensional spheres, by showing that πn+k(Sn) has no p-torsion if k < 2p ? 3, and has a unique subgroup of order p if n ? 3 and k = 2p ? 3.
つづく


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch