20/09/03 17:21:40.39 k0Z0EEBv.net
>>126
>違うだろ
>”Serre spectral sequence”つまり、スペクトル系列に力点がある
補足
Jean-Pierre Serre
(余談:”Hiroshi Toda”?)
URLリンク(en.wikipedia.org)
Homotopy groups of spheres
In the mathematical field of algebraic topology, the homotopy groups of spheres describe how spheres of various dimensions can wrap around each other. They are examples of topological invariants, which reflect, in algebraic terms, the structure of spheres viewed as topological spaces, forgetting about their precise geometry. Unlike homology groups, which are also topological invariants, the homotopy groups are surprisingly complex and difficult to compute.
Most modern computations use spectral sequences, a technique first applied to homotopy groups of spheres by Jean-Pierre Serre. Several important patterns have been established, yet much remains unknown and unexplained.
History
Jean-Pierre Serre used spectral sequences to show that most of these groups are finite, the exceptions being πn(Sn) and π4n?1(S2n).
Others who worked in this area included Jose Adem, Hiroshi Toda, Frank Adams and J. Peter May. The stable homotopy groups πn+k(Sn) are known for k up to 64, and, as of 2007, unknown for larger k (Hatcher 2002, Stable homotopy groups, pp. 385?393).
つづく