純粋・応用数学(含むガロア理論)4at MATH
純粋・応用数学(含むガロア理論)4 - 暇つぶし2ch10:現代数学の系譜 雑談
20/08/30 15:17:25.77 oR3g+efa.net
>>8
つづき
・単射でも全射でもあるような射は全単射あるいは双射 (bimorphism) と呼ばれる。
・同型射: 射 f: X → Y に対して射 g: Y → X が存在し、 f * g = idY かつ g * f = idX が成り立つものを同型射であると言う。射 f が左逆射と右逆射をともに持つとき、両者は一致して f は同型射であり、g は単に f の逆射 (inverse) と呼ばれる。逆射は、それが存在すれば一意である。逆射 g もやはり同型射であり、逆射として f を持つ。二つの対象がその間に同型射を持つとき、それら二つは互いに同型あるいは同値であるという。注意すべきは、任意の同型射は双射だが、双射は必ずしも同型射ではないことである。例えば、可換環の圏において包含射 Z → Q は双射だが同型射ではない。しかし、全射かつ分裂単射であるような、もしくは単射かつ分裂全射であるような任意の射は同型射でなければならない。集合の圏 Set のように、任意の双射が同型射であるような圏は、均衡圏 (balanced category) と呼ばれる。
・自己射: 射 f: X → X は、対象 X の自己射と言う。冪等自己射 f が分裂自己射 (split endomorphism) であるとは、分解 f = h * g で g * h = id を満たすものが存在するときに言う。特に、圏のカロウビ展開圏(英語版)は、任意の冪等射が分裂する。
・自己同型射は同型射であるような自己射を言う。

・普遍代数学において調べられるような具体圏(群の圏 Grp、環の圏 Ring、加群の圏 R-Mod など)における射は、ふつう準同型(準同型射)と呼ばれる。自己同型、自己準同型、全準同型、準同型、同型、単準同型などの概念が普遍代数において用いられる。
・位相空間の圏 Top において、射は連続写像であり、同型射は同相写像と呼ばれる。
・可微分多様体の圏 Man∞ において、射は滑らかな写像であり、同型射は微分同相写像と呼ばれる。
つづく


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch