20/10/25 20:11:38.23 +sNrb48x.net
正の整数 n と関数 f:Z→R について次のような条件を考える。
(A) 整数 x_1, …,x_n が (x_1)^3 +…+ (x_n)^3 = 0 を満たすならば f(x_1) +…+ f(x_n) = 0.
この時、各 n に対して条件(A)を満たす f 全体からなる集合 V_n は、
関数の加法やスカラー倍を値の加法やスカラー倍により定めることで、実数体上のベクトル空間をなす。
つまり関数 f,g:Z→R について (f+g)(x)=f(x)+g(x) と、実数αについて (αf)(x)=α(f(x)) と定める。
6 以上の整数 n について、ベクトル空間 V_n の次元を求めよ。