20/09/27 16:56:05.67 4ny0/why.net
>>775
f(x)=(√(1+x)-√(1+x^2))/(√(1-x^2)-√(1-x))
分母子に√(1-x^2)+√(1-x)をかけて
分子=(√(1+x)-√(1+x^2))*(√(1-x^2)+√(1-x))=分子前半 * 分子後半
分母=(√(1-x^2)-√(1-x))(√(1-x^2)+√(1-x))= 1-x^2 - (1-x) = x * (1-x)
f(x)= {分子前半 /x)} * {分子後半/(1-x)}
分子前半/x = (√(1+x)-√(1+x^2))/x = {1+x -(1+x^2)}/{x*(√(1+x)+√(1+x^2))}
= {x-x^2}/{x*(√(1+x)+√(1+x^2))}
=(1-x)/(√(1+x)+√(1+x^2))→1/2(x→0)
分子後半/(1-x)=(√(1-x^2)+√(1-x))/(1-x) →2 (x→0)
f(x)→1/2*2=1