高校数学の質問スレPart407at MATH
高校数学の質問スレPart407 - 暇つぶし2ch768:132人目の素数さん
20/09/23 07:09:37.67 63e1O9oo.net
>>718
〔補題〕 a>0, n≧3 のとき
(1+a)^n ≧ 1 + na + {n(n-1)/2}a^2 + {n(n-1)(n-2)/6}a^3,
(略証)
nについての帰納法による。
n=3 のときは等号成立。
ある n (≧3) に対して成り立つとする。
(1+a)^{n+1} = (1+a)(1+a)^n
 ≧ (1+a)[1 + na + {n(n-1)/2}a^2 + {n(n-1)(n-2)/6}a^3]
 = 1 + (n+1)a + {(n+1)n/2}a^2 + {(n+1)n(n-1)/6}a^3 + {n(n-1)(n-2)/6}a^4
 > 1 + (n+1)a + {(n+1)n/2}a^2 + {(n+1)n(n-1)/6}a^3,
よって n+1 に対しても成り立つ。  (終)


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch