20/09/17 17:37:16.11 bQnaRU+o.net
>>629
普通科なら多分そう
高校生でも解けなくはないけどね
x'(t) = dx/dt とすると、>>628の微分方程式は
x'(t) + x(t) = 2
と書ける。この両辺に e^t を掛けると、
(e^t)x'(t) + (e^t)x(t) = 2e^t
この左辺は ((e^t)x(t))' と書けるから、両辺を t で積分すれば
(e^t)x(t) = 2e^t + C ( C は積分定数)
この両辺に e^(-t) を掛ければ
x(t) = 2 + Ce^(-t)
が得られる。積分定数 C は初期値 x(0) の値によって定まる。