20/09/13 08:31:49.33 b41lLV7t.net
>>578
そんな事を書いてもお前がアホな事はごまかせないから
数学だけでなく国語も苦手なキチガイプログラム爺さん
使役の助動詞を強制だと思っていたアホ。生き恥晒してる
>>562
>お前のような糞ジジイが未成年に金を払って猥褻なことをさせて逮捕されている
この書き込みのどこが犯罪予備軍なんだ?
日本語の読解力0
高校数学のスレで下品な事を繰り返し書いてるお前が犯罪者だろ
早く刑務所に行け
608:132人目の素数さん
20/09/13 10:11:52.47 h1ZPzeSH.net
>>581
>>582
必死すぎる自称高校生www
609:132人目の素数さん
20/09/13 10:26:25.73 bFHTCnkP.net
女子高生にフェラをしてもらうのは善良な市民。
女子高生にフェラをさせるのは犯罪予備軍。
∴示された
610:132人目の素数さん
20/09/13 11:58:40.64 iRzhoQV/.net
>>584
おい産婦人科勤めの内視鏡技士。お前、本気で「フェラもしてもらう分には相手が女子高生でも善良」と思ってんのか?
医療従事者失格
611:132人目の素数さん
20/09/13 12:02:16.49 b41lLV7t.net
>>583
また精神異常者に絡まれた
問題を解かれた事が悔しくて悔しくてたまらないキチガイw
悔しいからまた絡んでくるんだろうな
↓↓↓
612:132人目の素数さん
20/09/13 13:36:51.80 JS1wU5xq.net
↑おっさんが高校生のふりってwww
613:132人目の素数さん
20/09/13 14:39:14.95 iRzhoQV/.net
ブーメラン自殺とな
614:132人目の素数さん
20/09/13 14:58:11.84 b41lLV7t.net
>>587
こいつ気持ち悪い
cosθ=2を解いただけでオッサンと決め付け粘着
精神異常のストーカー
615:132人目の素数さん
20/09/13 16:38:44.68 JS1wU5xq.net
>>589
オジサン1日5ch三昧でわろた
616:132人目の素数さん
20/09/13 17:34:45.26 b41lLV7t.net
>>590
精神異常キチガイストーカー
一日中粘着キチガイが何言ってるんだ?これが統質って奴か
617:132人目の素数さん
20/09/13 18:12:27.79 JS1wU5xq.net
>>591
一日中5chチェックw
そんな高校生いないからw
キチガイおじさんおっつw
618:132人目の素数さん
20/09/13 18:25:52.73 b41lLV7t.net
>>592
今日が日曜日だと分かってないキチガイ
無職で曜日感覚がないんだろうね
妄想に囚われるのも統合失調症の症状らしいね
粘着キチガイは早く死ねばいいのに
619:132人目の素数さん
20/09/13 18:52:44.43 JS1wU5xq.net
>>593
日曜に一日中5chチェックしてる高校生いねーっつうのw
おじさんおつかれw
620:132人目の素数さん
20/09/13 19:59:24.76 pqFcHJtz.net
ベズー等式を調べていくと、小学生レベルで分かる交換法則が奇しくも証明に役立つ事例が結構あるから面白い。
ax+by=cについて、交換法則を知らないと証明できない問題があるから。
621:132人目の素数さん
20/09/13 20:26:04.10 zLbVgxfR.net
嘘をつかない女子高生から
「あなたのいうことが正しければ手 コキかフ ェラをしてあげる」と言われた。
フ ェラをしてもらうには何と言えばいいか?
622:132人目の素数さん
20/09/13 20:39:33.77 JS1wU5xq.net
>>596
うるせーぞ部落民
623:557
20/09/13 23:56:12.21 UVqpUaXL.net
>>558
ありがとうございます!
すげー理解できました!
624:132人目の素数さん
20/09/14 06:40:42.02 2Ou4GFxL.net
>>594
まだキチガイが粘着していたか
じゃあ一日中粘着しているお前はオッサン確定だな。オッサンじゃなく無職のジジイか
俺以外のレスに対しても煽ってるんだな
一日中、他人を煽るだけの精神異常者のストーカー
国が責任持って隔離するか殺処分すればいいのに
社会のゴミクズが
625:132人目の素数さん
20/09/14 11:41:53.84 wN2IJT8l.net
エロに飢えてる奴は哀れだな
626:132人目の素数さん
20/09/14 12:05:01.36 ZTfbHYPX.net
>>585
内視鏡技士という国家資格はないよ。
内視鏡施行できるのは医師だけ。
627:132人目の素数さん
20/09/14 17:33:39.64 ZGDUtYBN.net
>>599
目覚めた瞬間に5chをチェックして必死に煽るオッサンw
628:132人目の素数さん
20/09/14 19:30:47.75 dbPa2cfM.net
a,b,cはすべて整数であるとする。
a^2+bc=1が成り立つとき、
aが偶数の場合は全てが互いに素となりますが、
aが奇数の場合はaとb、aとc以外は互いに素とならないことを証明する方法はありますか?
奇数に対応する8の倍数を掛けると平方数から1を引いた数になることは証明に役立ちそうですか?
629:132人目の素数さん
20/09/14 20:25:45.36 oqGrVAWA.net
8^2 + (-3)*21 = 1
5^2 + (-3)*8 = 1
630:132人目の素数さん
20/09/14 21:01:45.75 dbPa2cfM.net
すべて互いに素となる組があることを示して下さってありがとうございます。解に8の倍数が絡むことは確かなようです。
631:132人目の素数さん
20/09/14 21:22:16.17 oqGrVAWA.net
a^2 - 1 = (a+1)(a-1)
だから、 a = 2n+1 な�
632:� (2n+1)^2 - 1 = 4n(n+1) は 8 の倍数で、 n と n+1 は互いに素
633:132人目の素数さん
20/09/15 01:19:22.47 +9wOPfrZ.net
罪悪感自覚確信犯の書込>>596
わざわざスペースを入れて罪悪感自覚確信犯ぶりを露呈
634:132人目の素数さん
20/09/15 06:51:18.29 htUp7KdT.net
>>602
無職で粘着ストーカーのジジイは夕方に起きたのか
高校数学の範囲外の問題をわざわざ出題してマウントドヤ顔するつもりが、簡単に問題を解かれてしまい粘着ストーカーになるとかw
カッコ悪過ぎw
まだ顔が真っ赤なのか?早く涙拭けw
時々他人を煽るレスがあるけど、その殆どはお前が書いたんだろ?
他人を煽る事だけが楽しみの惨めなキチガイかwww
635:132人目の素数さん
20/09/15 06:57:07.15 TKKoZ7ub.net
>>607 粋蕎 ◆C2UdlLHDRI
いい加減学習しろよ。トリップつけるのはおまえのためじゃなくてお前の投稿をNGしたいやつのためなんだからちゃんとつけろよ。
636:132人目の素数さん
20/09/15 17:59:53.00 +rCDmHW0.net
>>608
キチガイが元気よく自己紹介w
637:132人目の素数さん
20/09/15 18:17:51.88 +9wOPfrZ.net
>>609
お前一人発狂してるだけだろ
638:132人目の素数さん
20/09/15 19:34:57.21 zhZxbCs+.net
8の倍数には2つの連続する奇数のどちらを掛けても平方数-1が成り立つ。という数が存在する。
これを証明する方法はありますか?
1×8=3^2-1
3×8=5^2-1
3×16=7^2-1
5×16=9^2-1
5×24=11^2-1
7×24=13^2-1
7×32=15^2-1
639:132人目の素数さん
20/09/15 19:37:53.89 zhZxbCs+.net
隣り合う奇数の平方数の差が8の倍数とか隣り合う奇数の和が4の倍数になるだけでは不十分ですし。
640:132人目の素数さん
20/09/15 19:52:35.11 fRXUQm28.net
(2n-1)×8n = (4n-1)^2-1
(2n+1)×8n = (4n+1)^2-1
641:132人目の素数さん
20/09/15 22:03:31.77 aHcwWly5.net
全部でn本の線対称軸をもつ平面図形があるとき
この図形が点対称でもある iff nが偶数
と言えますか。
642:132人目の素数さん
20/09/15 23:41:30.68 fRXUQm28.net
>>615
点対称の対称の中心のひとつOとして、Oに対するπ回転をgとしてgは対称軸全体の集合に自然に作用する
gとOを対称軸が通る線対称の生成する群をGとする
Gに属さない対称変換はgが自由に作用しているのでその個数は偶数であるので無視して良い。
この設定で問題は
「図形FはOに対する点対象でり、Oを通る対称軸がちょうどn本のとき、nは偶数であるか」
に還元される
対称軸はarg=πk/n (k∈Z)として良い
領域Dkを{p | (k)/nπ< arg p < (k+1)π/n}とする
D0は一回の対称移動でDnに移されるが向きは保たれる
一方でD0をn回の対称移動でDnに移されるが、nが奇数であると向きが反対になる
この二つが一致するならD0に含まれる部分はarg = π/(2n)についても対称になることになり矛盾
よってnは偶数でなければならない
643:イナ
20/09/16 04:45:46.46 XSb8ohSG.net
前>>540
>>566
センター試験の1回目と2回目を受けた。
過去問を見たり解いたりしてたとしたらほぼ共通一次。
∴センター世代。
644:132人目の素数さん
20/09/16 07:38:30.93 Fh4V4JS7.net
>>614
(2n-1)×8(n-1)=(4n-3)^2-1
(2n+1)×8(n+1)=(4n+3)^2-1
645:132人目の素数さん
20/09/16 14:15:57.63 Gf4JsLzZ.net
>>597
フェラ嫌いなの?
646:132人目の素数さん
20/09/16 14:18:44.01 Gf4JsLzZ.net
>>607
女子高生にフェラをしてもらうのは善良な市民。
女子高生にフェラをさせるのは犯罪予備軍。
∴示された
647:132人目の素数さん
20/09/16 18:00:18.98 vkN7OdIU.net
童貞丸出し
648:132人目の素数さん
20/09/16 23:
649:19:07.53 ID:D4S7oP9i.net
650:132人目の素数さん
20/09/16 23:27:52.16 ENjeKVXH.net
>>622
if and only if
「以下が必要十分条件である」を示す呪文
651:132人目の素数さん
20/09/16 23:38:07.10 Bs83Rmq4.net
呪文て
iffの発明者は証明終了の記号に墓石記号∎を初めて使ったポール・ハルモスさんだぞ
652:132人目の素数さん
20/09/17 07:26:00.61 OxM4fGH0.net
>>610
まだ粘着キチガイがいた
まだ顔真っ赤なのかw
高校数学範囲外の問題を出してマウントドヤ顔するつもりが簡単に解かれてしまい失敗
→しつこくオッサン認定をする粘着キチガイストーカーw
高校生に問題を解かれてしまいプライドがボロボロになったのか?
俺が高校生ではなく大学数学を学んだ事があるオッサンだと認定しないと精神が崩壊するんだろw
お前は既に精神が崩壊している異常者だから
早く殺処分されろ
653:132人目の素数さん
20/09/17 10:25:53.39 UBnPUQaR.net
犯罪予備軍ってマウントという語が好きだね。
マウントとりたがるのは猿だけ。
文明人でなくとも類人猿でもボノボまでくるとマウントとったりしない。
654:132人目の素数さん
20/09/17 13:19:26.96 75jteTYU.net
x軸上をx=0からx=1まで動く動点Pがあり
位置x(0≦x≦1)におけるPの速度がv=2-xで与えられている。
Pがx=0からx=1まで進むときの所要時間を求めよ。
これがよくわかりまんせん。
時間=道のり÷速度だから1/(2-x)で、
x=0からx=1なので1/2から1/1で、答えは1/2、というのはたぶんダメなのでしょうね。
655:132人目の素数さん
20/09/17 14:07:56.86 bQnaRU+o.net
>>627
問題設定がよくわからんな
位置が時間 t に依存するなら、 x = x(t), v = v(t) = dx/dt となるから、
微分方程式 dx/dt = 2 - x(t) の解から x = 1 のときの時刻 t を求める問題になる
x = 0 のときに t = 0 とするなら、微分方程式の解は
x(t) = -2e^(-t) + 2
となるから、 x = 1 のとき t = log(2) が答えになるはず
656:132人目の素数さん
20/09/17 15:23:07.45 75jteTYU.net
ありがとうござます
微分方程式ということは現行の高校ではやらん範囲の問題だったということですか
657:132人目の素数さん
20/09/17 16:29:24.56 lJ94fT43.net
>>625
オッサンが高校生のふりして粘着してんじゃねえぞw
どんなに頑張ってもお前はメタボハゲの童貞オヤジだからなw
658:132人目の素数さん
20/09/17 17:24:50.35 11GjVvKT.net
e^π > 21を証明せよ。
この問題が分かりません。
659:イナ
20/09/17 17:34:05.50 Jspq2G5e.net
前>>617
>>627
速さ2なら1行くのに1/2かかる。
速さ1なら1行くのに1/1=1かかる。
速さ3/2なら1行くのに2/3かかる。
速さ2-xなら1行くのに、部分積分して、
∫[x=0→1]{1/(2-x)}dx=[x=0→1]x/(2-x)-∫[x=0→1]{x/(-1)}dx
=1+1/2
=3/2
かかる。
最初から速さ0.7で行ったほうが速い。
660:132人目の素数さん
20/09/17 17:37:16.11 bQnaRU+o.net
>>629
普通科なら多分そう
高校生でも解けなくはないけどね
x'(t) = dx/dt とすると、>>628の微分方程式は
x'(t) + x(t) = 2
と書ける。この両辺に e^t を掛けると、
(e^t)x'(t) + (e^t)x(t) = 2e^t
この左辺は ((e^t)x(t))' と書けるから、両辺を t で積分すれば
(e^t)x(t) = 2e^t + C ( C は積分定数)
この両辺に e^(-t) を掛ければ
x(t) = 2 + Ce^(-t)
が得られる。積分定数 C は初期値 x(0) の値によって定まる。
661:132人目の素数さん
20/09/17 17:47:40.08 b5SyncL8.net
>>631
f(x)=e^x のx=3における接線
662:はg(x)=e^3(x-3)+e^3 y=f(x)は上に凸なのでf(π)>g(π) ∴e^π>e^3(π-3)+e^3=e^3(π-2)>(2.71)^3×1.14>21
663:132人目の素数さん
20/09/17 17:48:14.57 b5SyncL8.net
上に凸→下に凸
664:132人目の素数さん
20/09/17 17:51:52.03 11GjVvKT.net
>>634
e > 2.71、π > 3.14の証明も必要ではないのでしょうか?
665:イナ
20/09/17 17:57:07.17 Jspq2G5e.net
前>>632訂正。
>>627
∫[x=0→1]{1/(2-x)}dx=[x=0→1]x/(2-x)+∫[x=0→1]{x/(x-2)^2}dx
=1+
こっちを上げるんじゃないのかな?
666:132人目の素数さん
20/09/17 17:58:25.50 b5SyncL8.net
>>636
いっさい必要ない
667:イナ
20/09/17 18:26:56.07 Jspq2G5e.net
前>>637訂正。
>>627
∫[x=0→1]{1/(2-x)}dx=[x=0→1]log|2-x|
=log2-log1
=log2
=0.30129996……
やっぱり初速が速いから。
腑に落ちた。
668:132人目の素数さん
20/09/17 18:53:38.22 11GjVvKT.net
>>638
ありがとうございました。
>>631
独自の解答です:
2.7^4 = 53.1441 > 53
2.7^8 > 53^2 = 2809
e^10 > 2.7^10 > 2.7^2 * 2809 = 7.29 * 2809 = 20477.61 > 19683 = 3^9
10 = log(e^10) > log(3^9) = 9*log(3)
10/9 > log(3)
e^2 > 2.7^2 = 7.29 > 7
2 = log(e^2) > log(7)
π > 3.14 > 3.111… = 2 + 10/9 > log(3) + log(7) = log(21)
∴e^π > 21
669:132人目の素数さん
20/09/17 19:00:37.55 RV9ad19o.net
exp(6asin(x/2))
= 1 + 3 x + 1/2 (9 x^2) + 1/8 (37 x^3) + (positive)
(∵ asin exp 共にマクローリン展開の係数は正)
1 + 3 x + (9 x^2)/2 + (37 x^3)/8 + (15 x^4)/4 + (333 x^5)/128 + (13 x^6)/8
= 2701/128
= 21.1016 at x=1
670:132人目の素数さん
20/09/17 19:19:03.82 xI04d2jT.net
>>620
> 女子高生にフェラをしてもらうのは善良な市民。
> 女子高生にフェラをさせるのは犯罪予備軍。
> ∴示された
イナこと稲川将人先輩も其うだが、お前も∴の意味分からねーのか?其れにどこが示せているんだ?
女子高生に無理フェラされるのは強姦被害の善良な市民。
女子高生の自発的奉仕フェラに無抵抗でいるのは対未成年性的交遊無抵抗の不謹慎な市民。
女子高生の自発的奉仕フェラに好意的順応するのは対未成年性的交遊共同の不貞不埒な市民。
女子高生に奉仕フェラ要求を応えて貰うのは未成年性的交遊誘導の不道徳な市民。
女子高生にフェラ強制するのは未成年準強姦の犯罪者。
∴女子高生にフェラを相手提案でされるのも自分要求でされるのも不祥事。
但し両者非婚姻、婚姻下ならば此の限りでは無い。
男は性交渉に対して土壇場で慎む方向に気難しい位で良い。
結局テメェも程度の差こそ有れど大島の相方と同類の不貞野郎って事
671:132人目の素数さん
20/09/17 19:26:58.46 BAmg4j4a.net
嘘をつかない女子高生から
「あなたのいうことが正しければ手 コキかフ ェラをしてあげる」と言われた。
フ ェラをしてもらうには何と言えばいいか?
672:132人目の素数さん
20/09/17 19:40:27.01 xI04d2jT.net
言う前に先ずは社会通念上倫理を変えるのが先
イスラム教開祖ムハンマドは自身が28歳の時に6歳だった少女と婚約し9歳に成った時に結婚を完成させた、と言われている
673:132人目の素数さん
20/09/17 19:53:09.48 b5SyncL8.net
稲川正人49歳
貯金ゼロ
674:132人目の素数さん
20/09/17 19:58:31.47 xI04d2jT.net
もしくは対未成年淫行が違法じゃない国の人間に成って当該国内でやれ。然も無くば不祥事
亀梨は復帰、山Pは脱落
知らなかったは弁解無効、例え自称成人詐欺の美人局相手であっても正当弁解さえ無効
此れを公務員の世界では「例え無罪で運が悪かっただけでむしろ全て相手の犯罪的陥落計略だったとしても罪」と言う。
隕石に当たっても罪。無差別殺人に巻き込まれても罪。建前維持と無難こそ史上正義の恐ろしい業界。
675:132人目の素数さん
20/09/17 20:49:43.70 vXAagDU/.net
>>642
児嶋だよ!何だよ大島って
676:132人目の素数さん
20/09/17 21:54:06.04 bQnaRU+o.net
>>639
常用対数はさすがに笑う
初速度が 2 なんだから、 0.5 以上になることは明らかだろうに
677:132人目の素数さん
20/09/17 22:42:20.99 2ry2SgY8.net
どっかで一発正解していて心配したけど、いつものイナさんに戻ってよかった
678:イナ
20/09/17 22:52:32.30 Jspq2G5e.net
前>>639訂正。
>>627
∫[x=0→1]{1/(2-x)}dx=[x=0→1]log|2-x|
=log2-log1
=loge2
=0.69314……
速さ3/2で行って2/3かかるよりもうちょっと時間かかるわけか。
679:132人目の素数さん
20/09/18 06:28:56.46 KzbmMGgY.net
>>630
高校数学範囲外の問題を出題してドヤ顔マウントするつもりが失敗w
その後、粘着ストーカーになるキチガイ池沼
悔しくてまだ粘着してるのかよw
ダサ
しかもオッサン認定だけでなくメタボ認定とか童貞認定するとかw
書き込みから書いたヤツの容姿や年齢が分かる能力が自分にはあると思い込んでいるみたいだなw
さすがキチガイw
もう死ね
680:132人目の素数さん
20/09/18 07:07:47.40 PmbH//2K.net
女子高生にフェラをしてもらうのは善良な市民。
女子高生にフェラをさせるのは犯罪予備軍。
日本では女子は現時点で16歳から結婚可能。
13歳以下だとstatutory rapeになる。
∴示された。
681:132人目の素数さん
20/09/18 09:22:26.73 sSB3QbM0.net
>>631
1/(e^π +1) + 3/(e^(3π)+1) + 5/(e^(5π)+1) + 7/(e^(7π)+1) + … = 1/24,
∴ e^π > 23,
スレリンク(math板:57番)
682:132人目の素数さん
20/09/18 09:37:43.96 gNoSapFg.net
やたら基礎的なことなんですが「サイコロを二つ投げた時に合計10になるときの確率を求めよ。」っていう問題。答えが、全事象の中でサイコロの出目の合計が10になるのが(4,6),(5,5),(6,4)の三つだから3/36=1/12だっていうことです。でも(4,6)と(6,4)を区別するなら(5,5)も二回数えたほうがいいんじゃない?って思うんです。何で1回しか数えないの?
683:イナ
20/09/18 10:43:19.17 nQky0mGA.net
前>>650
>>654
確率はすべての場合分のその場合の数だから、
サイコロ2個投げて出る出目のすべての場合は6×6=36
出目の合計が10になるのは(4,6),(5,5),(6,4)の3通り。
3/(6×6)=3/36
=1/12
=0.0833……
∴約8.33%
684:イナ
20/09/18 10:49:33.03 nQky0mGA.net
前>>655
>>654
(5,5)を2回かぞえたいならかぞえてもいいと思う。
そのかわり(4,6)も2回かぞえてほしい。
そうしないと公平じゃないからね。
もちろん(6,4)も2回、すべての出目の数は72になって、
求める確率は6/72=0.833……
いっしょです。
685:132人目の素数さん
20/09/18 12:11:47.02 KylrWKwF.net
>>654
4と6ってのは「サイコロAが4でサイコロBが6」と「サイコロAが6でサイコロBが4」の2通りがあるけど、
5と5ってのは「サイコロAが5でサイコロBが5」の1通りしかないから
686:132人目の素数さん
20/09/18 13:24:39.43 gNoSapFg.net
>>657
サイコロが区別されるならサイコロAとサイコロBの5もそれぞれ区別されるんじゃないかなって思っちゃったけど文章で書いてくれたおかげでそんなわけないわ。っと思った。どうもありがとう。
687:132人目の素数さん
20/09/18 13:29:02.42 gNoSapFg.net
>>656 ありがとうございます。
688:132人目の素数さん
20/09/18 15:20:14.75 PCMhnvU2.net
>>654
かけ算の九九の表を思い浮かべて欲しい。
答えが 36 になるのは、
689:何通り、あるいは、どこにあるか? これを考えることが、疑問の解決に繋がると思う。
690:132人目の素数さん
20/09/18 18:21:56.68 nSba8wHc.net
>>651
早朝から必死なガイジおじさんおつw
691:132人目の素数さん
20/09/18 18:24:43.76 h4DN+aTO.net
>>631
有名な東大の問題じゃん
1次近似使うとはやい
692:132人目の素数さん
20/09/18 18:29:18.74 nSba8wHc.net
>>662
>>634
693:132人目の素数さん
20/09/18 18:33:40.22 sSB3QbM0.net
>>653
x = e^(-π) とおくと
(左辺) = x/(1+x) + 3(x^3)/(1+x^3) + 5(x^5)/(1+x^5) + ・・・・・
= x {1/(1+x) + (3x^2)/(1+x^3) + (5x^4)/(1+x^5) + ・・・・・ }
= x (d/dx) log[(1+x)(1+x^3)(1+x^5)・・・・]
= x (d/dx){ log[(1+x)(1-x^2)(1+x^3)(1-x^4)(1+x^5)・・・・]
- log[(1-x^2)(1-x^4)(1-x^6)・・・・] }
= x (d/dx){ -log(G(-x)) + log(G(x^2)) },
ここに
G(x) = Σ[n=0,∞] p(n)・x^n,
は分割数p(n)の生成関数。
1/G(x) = (1-x)(1-x^2)(1-x^3)・・・
= Σ[m=-∞,∞] (-1)^m x^{m(3m-1)/2},
694:132人目の素数さん
20/09/18 22:51:51.57 Q6g52AFS.net
0°<α<β<180°でcos(α)=3/5, sin(β)=7/25 のとき
sin(βーα) を求めよ。
という問題で、
sin(α)=4/5, cos(β)=24/25だから
sin(βーα)=(7/25)*(3/5)ー(24/25)*(4/5)=-75/125=-3/5
としたのですが答えが合わない何が間違っているですか?
695:132人目の素数さん
20/09/18 23:20:09.95 /kN5y0e4.net
>>665
cosα=3/5だからsinα=4/5=20/25
よってsinβ<sinαで、かつα<βということはβは鈍角なのでcosβの値は負
696:132人目の素数さん
20/09/18 23:25:01.53 Q6g52AFS.net
なるほど!わかりました。
鈍角か鋭角かなんて全然気にしてませんでした。
697:132人目の素数さん
20/09/18 23:59:29.44 G9fq8ajf.net
6n個のサイコロを同時に振った時どの目もちょうどn回出る確率という問題を出されて
(6n)!/{6^6n×(n!)^6}
までは行ったのですが数3をやってないのでこの関数が収束するか発散するか分かりません 収束か発散するか教えてください
698:668
20/09/19 00:08:55.96 GNfAirVu.net
確率が発散することはないことに気づきました
となると0に収束でいいんですかね
699:132人目の素数さん
20/09/19 00:53:15.53 Y80rfxhB.net
よい
高校生には無理
700:イナ
20/09/19 01:06:21.89 b/MR+79v.net
前>>656
>>665
sinα=4/5よりcosα=√(1-16/25)=3/5
sinβ=7/25よりcosβ=-√(1-49/125)
=-24/25
加法定理より、
sin(β-α)=sinβcosα-cosβsinα
=(7/25)(3/5)-(-24/25)(4/5)
=(21+96)/125
=117/125
701:132人目の素数さん
20/09/19 02:26:13.83 BWISzusK.net
>>668
(6n)!/(6^(6n)(n!)^6) と書けよ
702:132人目の素数さん
20/09/19 02:51:59.89 0zHXJRh+.net
>>668
nが大きいとき、スターリングの公式
n! ≒ n^{n+1/2}・e^{-n}・√(2π)・e^{1/(12n)},
(6n)! ≒ (6n)^{6n+1/2}・e^{-6n}・√(2π)・e^{1/(72n)},
より
(√6)・(2πn)^{-5/2}・e^{-35/(72n)} → 0 (n→∞)
703:132人目の素数さん
20/09/19 14:22:50.17 wNJtfq4l.net
試してないけどダランベールでも行けそうだな
704:132人目の素数さん
20/09/19 17:38:01.36 Hbz19AaX.net
大四喜を和了した場合、字一色も複合している可能性が高いと思うのですが
この条件付確率は求められますか
705:132人目の素数さん
20/09/19 21:08:54.88 sWg6HrMz.net
頭が白発中か数牌かっていう確率なんじゃないの?
字一色ではない可能性の�
706:福ェ高いだろう
707:132人目の素数さん
20/09/19 21:36:21.15 Y80rfxhB.net
大四喜単騎で白とイーワン持ってたらイーワン切りたくなるのが人情だけどなww
708:668
20/09/19 23:50:58.67 ndT+IyZp.net
下に有界で単調減少なのは分かりましたが最終的に0に収束するかが分かりません
どれやって上から抑えつければいいでしょう
709:132人目の素数さん
20/09/20 00:00:01.84 6H8HV866.net
上の方てスターリングの公式使った証明載ってますがな
710:132人目の素数さん
20/09/20 06:37:21.90 U0lyHwHU.net
平方数のうち、1の位が6であるときだけ、10の位が奇数になることの証明はできますか?
逆に、1の位が4ないし6であれば、その自乗は奇数の10倍+6で表せるということも。
711:132人目の素数さん
20/09/20 07:31:46.53 WOgtmfHP.net
>>680
>>220-221
712:132人目の素数さん
20/09/20 10:04:26.57 drq50VcS.net
>>678
自然対数をとってln(1+x)≦xであることと1/nの無限級数が発散することを利用してe^(-5/2*Σ(1/n))で抑えつける
713:132人目の素数さん
20/09/20 20:37:09.35 dXsUQq0z.net
>>682
よく分からないのでもう少し詳しく教えて下さい
714:132人目の素数さん
20/09/20 20:45:51.88 uJeCEg0R.net
y=x^2-3、x=y^2-2
この連立方程式ってどう解けますか?
715:132人目の素数さん
20/09/20 22:13:22.55 drq50VcS.net
>>683
6n個のサイコロを同時に振った時どの目もちょうどn回出る確率をPと置くと
P=(6n)!/(6^(6n)(n!)^6)
=((6n)(6n-1)(6n-2)・・・3*2*1)/((6n)(6n-6)(6n-12)・・・18*12*6)^6
=Π((6n-5)(6n-4)(6n-3)(6n-2)(6n-1)/(6n)^5)
=Π((1-5/(6n))(1-4/(6n))(1-3/(6n))(1-2/(6n))(1-1/(6n))
両辺自然対数をとると
lnP=lnΠ((1-5/(6n))(1-4/(6n))(1-3/(6n))(1-2/(6n))(1-1/(6n))
=Σln(1-5/(6n))+Σln(1-4/(6n))+Σln(1-3/(6n))+Σln(1-2/(6n))+Σln(1-1/(6n)
ここで ln(1+x)≦x(必要ならば別途証明してください) から
Σln(1-5/(6n))≦-5/6*Σ(1/n), Σln(1-4/(6n))≦-4/6*Σ(1/n),以下略なので
lnP≦-5/6*Σ(1/n)-4/6*Σ(1/n)-3/6*Σ(1/n)-2/6*Σ(1/n)-1/6*Σ(1/n) = -5/2*Σ(1/n)
対数を外すと
P ≦ e^(-5/2*Σ(1/n))
-5/2*Σ(1/n)が-∞に発散してe^(-5/2*Σ(1/n))は0に収束
716:132人目の素数さん
20/09/20 22:34:59.79 3aVx1STs.net
>>685
なるほど
ln(1+x)≦x の代わりに 1+x≦e^x を使えば
Π((1-5/(6n))(1-4/(6n))(1-3/(6n))(1-2/(6n))(1-1/(6n)) から直接評価できますな
あと「6n個のサイコロを同時に振った時、どの目もちょうどn回出る確率」が0に収束する事だけを言いたければ
その確率より「6n個のサイコロを同時に振った時、奇数と偶数がちょうど3n回ずつ出る確率」の方が明らかに大きく
その確率は m=3n とおくと
(2m)!/{2^(2m)・(m!)^2}
となるから、これが0に収束する方が評価しやすいかも(あんまり変わらんか)
717:132人目の素数さん
20/09/20 23:03:48.69 P215UI9d.net
>>684
グラフ見ると4交点あるから4方程式を解く
718:132人目の素数さん
20/09/20 23:39:20.89 6H8HV866.net
できるにしてもやらない方がいい頑張り
そういうのにシャカリキになると数学が筋悪になる
719:132人目の素数さん
20/09/21 00:39:54.27 ezKXOT93.net
まじで基本的なことがわからんから教えてほしい
Pが偽でQが真、Pが偽でQも偽
このとき、(PならばQ)は真だけど、(PならばQ)かつP (前件肯定) が偽になる理由がわからん
そもそも(PならばQ)と(PならばQ)かつP、って同じ前件肯定じゃないの?かなり混乱してる
720:132人目の素数さん
20/09/21 02:00:34.23 0Bg1G67V.net
「PならばQ」と「P」の両方が成り立ちますかって聞いてて
Pが偽の場合を考えてるんだから偽になるよね
721:132人目の素数さん
20/09/21 02:02:28.35 KQ8XEw9y.net
「 P ならば Q 」は「 (¬P) または Q 」と同値
722:132人目の素数さん
20/09/21 02:03:19.70 bVYRH+tm.net
Pが偽なので Qの真偽に関わらず「PならばQ」は真
し�
723:スがって 「PならばQ」かつP という (「真の命題」かつ「偽の命題」) という命題は 偽 ということになる。 ただただそれだけの形式的な議論なんだ。
724:132人目の素数さん
20/09/21 02:48:59.11 ezKXOT93.net
>>692
わかりやすい…
たったそれだけのことだったのか
まじでありがとう
725:132人目の素数さん
20/09/21 02:53:28.07 z8CeEVDW.net
>>686
P = (2m)!/{2^(2m)・(m!)^2}
= Π[k=1,m] (k - 1/2)/k
< Π[k=1,m] k/(k + 1/2)
< Π[k=1,m] k/√(k(k+1))
= Π[k=1,m] √{k/(k+1)}
= 1/√(m+1)
→ 0 (m→∞)
>>685 の方も相乗-相加平均を使い
(1-5/(6k))(1-4/(6k))(1-3/(6k))(1-2/(6k))(1-1/(6k))
< (1 - 3/(6k))^5
= ((k - 1/2)/k)^5
< (k/(k + 1/2))^5
< (k/√{k(k+1)})^{5/2}
= (k/(k+1))^{5/2},
P < Π[k=1,n] (k/(k+1))^{5/2}
= 1/(n+1)^{5/2}
→ 0 (n→∞)
726:132人目の素数さん
20/09/21 03:49:44.34 z8CeEVDW.net
>>673 から
カタラン数
C_m = C[2m,m] /(m+1)
= (2m)!/{(m+1)・(m!)^2}
~ (4^m)/{(m+1)√(πm)}・e^{-1/(8m)}
~ (4^m)/√{π(m+3/4)^3},
727:132人目の素数さん
20/09/21 07:07:42.05 sBuqxlft.net
URLリンク(i.imgur.com)
矢印を引いた箇所がわかりません
anとbnを入れ替えただけに見えますが、なぜそれができるのでしょうか?
728:132人目の素数さん
20/09/21 07:29:33.41 cCLtoM5d.net
>>694
なるほど上手いですね
ふとこんな事を思いつきました
(2m)!/{2^(2m)・(m!)^2}=(2/π)∫[0,π/2]sin^(2m)x dx より
a_m=∫[0,π/2]sin^(2m)x dx → 0 (m→∞) を示せばよい
b_m=∫[0,π/2]sin^(2m-1)x dx とおくと
0<(a_m)^2<a_m・b_m=π/(4m)→0 (m→∞)
計算ミスや勘違いがあるかもですが
729:132人目の素数さん
20/09/21 08:49:04.80 8lxIqyvP.net
>>696
b=(a+2)/(a-1)をaについて解くだけじゃないの?
730:132人目の素数さん
20/09/21 09:49:14.27 sBuqxlft.net
>>698
ほんとですね…
どうしてしまったんだろう、たまにこういうバグみたいなことが起こります
バカを晒しましたがまた懲りずに質問させてください
ありがとうございましたm(_ _)m
731:132人目の素数さん
20/09/21 10:15:02.31 sWxCF3qZ.net
そうか、traceが0だと自動的にA^2=idになるのか
732:132人目の素数さん
20/09/21 10:18:44.12 5wWjrPVO.net
>>699
たまたま逆関数が元関数と一致したんで入れ替えただけに見えたんだろうね
733:132人目の素数さん
20/09/21 11:17:59.53 pOYPjR8v.net
つまり解き方の手順がぜんぜんわかってないということ
734:132人目の素数さん
20/09/21 12:01:33.81 OxaxChdJ.net
なんでそう煽るんだか
735:132人目の素数さん
20/09/21 12:23:06.24 pOYPjR8v.net
>>700
ハミルトンケーリーって知ってる?
736:132人目の素数さん
20/09/21 13:32:31.63 lAYOWlOk.net
>>691
恒真式
P→(Q→P)
マウント猿ならば(犯罪予備軍ならばマウント猿である)
¬P→(P→Q)
マウント猿でないなら(マウント猿であれば犯罪予備軍である)
737:132人目の素数さん
20/09/21 14:05:42.82 lAYOWlOk.net
こっちが正しいな。
恒真式
P→(Q→P)
マウント猿ならば(犯罪予備軍ならばマウント猿である)
(¬P→P)→Q)
(マウント猿でないならマウント猿)ならば犯罪予備軍である
738:132人目の素数さん
20/09/21 14:27:45.34 lAYOWlOk.net
"
「マウント猿ならば、レイプという語を好んで使うなら犯罪予備軍である」から
「レイプという語を好んで使うならば、マウント猿ならば犯罪予備軍である」が、導けるか?
"
真偽表を作ってプログラムに判定させる
'%=>%' = function(P,Q) !(P & !Q)
M=c(T,F)
R=c(T,F)
C=c(T,F)
gr=expand.grid(M,R,C)
colnames(gr)=c('M','R','C')
gr
f4 <- function(M,R,C) (M %=>% (R %=>% C)) %=>% (R %=>% (M %=>% C))
mapply(f4,gr[,1],gr[,2],gr[,3])
739:132人目の素数さん
20/09/21 15:00:36.76 q0Zxn9JN.net
一個トートロジーでないのがあるな
740:132人目の素数さん
20/09/21 15:09:28.66 AMqGYK4x.net
>>708 ご指摘の通り
741:132人目の素数さん
20/09/22 03:45:03.77 zZA3sdlG.net
「馬鹿は、死ななきゃ治らない」を
「馬鹿ならば(死なないならば治らない)」
と解釈して対偶を述べよ。
742:132人目の素数さん
20/09/22 04:18:32.20 JSZeS3xh.net
るっせーぞガイジ
743:132人目の素数さん
20/09/22 06:50:26.93 g+LmSvak.net
>>697
sin(x) をガウスの誤差関数で近似すると
sin(x) ≦ exp{-(1/2)(π/2 -x)^2} (0≦x≦π)
なので
a_m = ∫[0,π/2] sin(x)^{2m} dx
< ∫[0,π/2] e^{-m(π/2 -x)^2} dx
< ∫[-∞,π/2] e^{-m(π/2 -x)^2} dx
= √(π/4m)
→ 0 (m→∞)
〔補題〕
sin(x)・exp{(1/2)(π/2 -x)^2} ≦ 0, (0≦x≦π)
(略証)
0<t≦π/2 では
cot(t) - (π/2 -t) = tan(π/2 -t) - (π/2 -t)
≧ 0 (0<t≦π/2)
≦ 0 (π/2≦t<π)
tで積分して (π/2~x)
log(sin(x)) + (1/2)(π/2 -x)^2 ≦ 0,
exp をとる。(終)
744:132人目の素数さん
20/09/22 07:29:20.96 g+LmSvak.net
〔補題〕
cos(x) ≦ exp{-(1/2)xx}, (|x|≦3π/2)
sin(x) ≦ exp{-(1/2)(π/2 -x)^2}, (-π≦x≦2π)
745:132人目の素数さん
20/09/22 08:57:22.75 zZA3sdlG.net
以下の中から論理的に同値な組み合わせをすべて列挙せよ。
簡略化のために、「レイプという単語を好んで使う」を「レイプ好き」と表記する。
a : マウント猿ならば(レイプ好きならば犯罪予備軍である)
b : (マウント猿ならばレイプ好き)ならば犯罪予備軍である)
c : マウント猿ならば(犯罪予備軍ならばレイプ好きである
d : (マウント猿ならば犯罪予備軍)ならばレイプ好きである
e : レイプ好きならば(マウント猿ならば犯罪予備軍である)
f : (レイプ好きならばマウント猿)ならば犯罪予備軍である
g : レイプ好きならば(犯罪予備軍ならばマウント猿である)
h : (レイプ好きならば犯罪予備軍)ならばマウント猿である)
i : 犯罪予備軍ならば(マウント猿ならばレイプ好きである)
j : (犯罪予備軍ならばマウント猿)ならばレイプ好きである
k : 犯罪予備軍ならば(マウント猿ならばレイプ好きである)
l : (犯罪予備軍ならばマウント猿)ならばレイプ好きである)
746:132人目の素数さん
20/09/22 08:59:20.45 zZA3sdlG.net
>>714(修正版)
以下の中から論理的に同値な組み合わせをすべて列挙せよ。
簡略化のために、「レイプという単語を好んで使う」を「レイプ好き」と表記する。
a : マウント猿ならば(レイプ好きならば犯罪予備軍である)
b : (マウント猿ならばレイプ好き)ならば犯罪予備軍である)
c : マウント猿ならば(犯罪予備軍ならばレイプ好きである
d : (マウント猿ならば犯罪予備軍)ならばレイプ好きである
e : レイプ好きならば(マウント猿ならば犯罪予備軍である)
f : (レイプ好きならばマウント猿)ならば犯罪予備軍である
g : レイプ好きならば(犯罪予備軍ならばマウント猿である)
h : (レイプ好きならば犯罪予備軍)ならばマウント猿である)
i : 犯罪予備軍ならば(マウント猿ならばレイプ好きである)
j : (犯罪予備軍ならばマウント猿)ならばレイプ好きである
k : 犯罪予備軍ならば(レイプ好きならばマウント猿である)
l : (犯罪予備軍ならばレイプ好き)ならばマウント猿である
747:132人目の素数さん
20/09/22 09:18:51.71 JSZeS3xh.net
るっせーぞガイジ
748:132人目の素数さん
20/09/22 09:26:30.41 zRfqciev.net
面白いと思ってやってんの?
749:132人目の素数さん
20/09/22 09:38:02.50 CcjprFWn.net
a>0,n≧3のとき
(1+a)^n>1/6{n(n-1)(n-2)a^3
が成り立つことを示せ
二項定理ではできたのですが、帰納法を使って示す方法を教えて下さい。
750:132人目の素数さん
20/09/22 10:20:17.38 EzxVgIV4.net
>>717
んで、答は?
751:132人目の素数さん
20/09/22 11:47:35.44 EzxVgIV4.net
命題 「マウント猿 ならば (レイプ好き ならば 犯罪予備軍 である)」と同値である命題は以下のうちいずれか?
1 : マウント猿 ならば (犯罪予備軍 ならば レイプ好き である)
2 : レイプ好き ならば (マウント猿 ならば 犯罪予備軍 である)
3 : レイプ好き ならば (犯罪予備軍 ならば マウント猿 である)
4 : 犯罪予備軍 ならば (マウント猿 ならば レイプ好き である)
5 : 犯罪予備軍 ならば (レイプ好き ならば マウント猿 である)
752:132人目の素数さん
20/09/22 11:49:35.58 VK0/3WeU.net
プログラムくんのせいで変なスレになっちゃったね
753:132人目の素数さん
20/09/22 13:03:45.98 wImnZct9.net
20^m + 21^n が2021の倍数になるような自然数m,nの組はありますか。
754:132人目の素数さん
20/09/22 13:18:52.92 zZA3sdlG.net
P⇒(Q⇒R) と(P⇒Q)⇒Rは同値か?
という類いの抽象問題じゃ面白くない。
楕円球の半径や距離も地球を題材にするから面白みがでる。
>720も趣向を変えるとこんな感じ。
シリツ医 ならば (馬鹿 ならば 裏口 である) という命題が真であるときに結論できるのは以下のいずれか?
1 : シリツ医 ならば (裏口 ならば 馬鹿 である)
2 : 馬鹿 ならば (シリツ医 ならば 裏口 である)
3 : 馬鹿 ならば (裏口 ならば シリツ医 である)
4 : 裏口 ならば (シリツ医 ならば 馬鹿 である)
5 : 裏口 ならば (馬鹿 ならば シリツ医 である)
755:132人目の素数さん
20/09/22 14:42:17.54 zZA3sdlG.net
>>722 1000までにはみつからなかった。 library(gmp) m=1:10000 n=1:10000 gr=expand.grid(m,n) gr h <- function(m,n){ mod.bigz(20^m+21^n,2021)==0 } re=mapply(h,gr[,1],gr[,2]) sum(re) > sum(re) [1] 0 CかHaskell使える人にあとは任せた。
757:132人目の素数さん
20/09/22 16:09:35.95 3aOQJxWo.net
>>712
次から次出てきて凄いですね
普段は不等式スレにいる方ですかね?
758:132人目の素数さん
20/09/22 16:14:07.35 xMUsJDvi.net
オ―バードクターのあいつだろ
759:132人目の素数さん
20/09/22 17:35:06.02 C2+qZagP.net
>>722
一個はあるな
print $ mod (20^483+21^483) 2021
0
760:132人目の素数さん
20/09/22 19:02:45.53 g+LmSvak.net
m=n の場合を考える。
20^n + 21^n が 43 で割り切れる
⇔ n = ((43-1)/2)・(奇数) = 21・(奇数),
20^n + 21^n が 47 で割り切れる
⇔ n = ((47-1)/2)・(奇数) = 23・(奇数),
よって
20^n + 21^n が 2021=43・47 で割り切れる
⇔ n = 21・23・(奇数) = 483・(奇数),
761:132人目の素数さん
20/09/22 19:32:59.19 g+LmSvak.net
2021 = 43・47
20^m + 21^n が 43 で割り切れる
⇔ m+3n = 21・k, mは奇数
20^m + 21^n が 47 で割り切れる
⇔ 3m+2n = 23・(奇数), mは奇数
よって
20^m + 21^n が 2021=43・47 で割り切れる条件は…
762:132人目の素数さん
20/09/23 01:47:08.87 qMQmLmqf.net
aは無理数で、a^3-a^2-3a と a^3-5a はともに有理数であるとき
これら有理数の値を求めよ。
へるぷしてください。
763:132人目の素数さん
20/09/23 02:13:26.95 gY3DZCWU.net
>>730
条件は無理数aに対し
a^3-5aとa^2-2aが共に有理数となること
a^2-2a=qとおくとき
a^3-5a
=(a^2-5a-q)(a+5)+(-q-25)a-5q
=(-q-25)a-5q
コレが有理数になるのはq=-25のとき
aは1±√26でいずれも無理数なので条件を満たす
いずれの場合も
a^3-5a=-5q=125
a^3-a^2-3a=a^3-5a-(a^2-2a)=125-(-25)=150
764:132人目の素数さん
20/09/23 02:16:14.90 7Npgk6DY.net
>>730
X=a^3-5a
Y=a^3-a^2-3a
X-Y = a^2-2a も有理数だから
それに1を加えた (a-1)^2 も有理数である
よって r = (a-1)^2 とおけば a = 1±√r (r:有理数)
X=a^3 - 5a に代入すれば (3r-4)±(r-2)√r となるが
これが有理数であること,および,3r-4が有理数であることから
(r-2)√r も有理数であることがいえる.
ここで, r≠2 と仮定すると √r が有理数であるとなるが,
そうすると a = 1±√r も有理数となり 条件に反する.
よって, r=2 であることが背理法により示された.
逆に r=2 のとき, X と a^2-2a は有理数だから
Y = X - (a^2-2a) も有理数となる.
したがって, 求める値は r=2 のとき すなわち a=1±√2 である
答え: a = 1±√2
765:132人目の素数さん
20/09/23 05:00:07.84 7Npgk6DY.net
>>730
別解. たぶん汎用性はこっちのほうが高い:
(a^3-5a)-(a^3-a^2-3a) = a^2-2a も有理数
ここで b=a^3-5a, c=a^2-2a とおく
あとはaの次数を下げる,いわゆる次数下げを行う.
a^2=2a+c より a^3=2a^2+ca だから
b=a^3-5a=2a^2+ca-5a=2(2a+c)+(c-5)a=(c-1)a+2c
∴ (c-1)a = b-2c
aは無理数であるから c=1 にならざるをえない
よって 1=a^2-2a となり しからば a=1±√2
766:132人目の素数さん
20/09/23 06:22:59.04 63e1O9oo.net
X - Y = a(a-2) = (a-1)^2 - 1 = d,
を使えば
X = a^3 - 5a = a(d-1) + 2d,
Y = a^3 - a^2 - 3a = a(d-1) + d,
題意より X, Y, d は有理数だから a(d-1) は有理数。
一方 aは無理数だから、係数 d-1 は 0.
∴
767: (a-1)^2 -1 = d = 1,
768:132人目の素数さん
20/09/23 07:09:37.67 63e1O9oo.net
>>718
〔補題〕 a>0, n≧3 のとき
(1+a)^n ≧ 1 + na + {n(n-1)/2}a^2 + {n(n-1)(n-2)/6}a^3,
(略証)
nについての帰納法による。
n=3 のときは等号成立。
ある n (≧3) に対して成り立つとする。
(1+a)^{n+1} = (1+a)(1+a)^n
≧ (1+a)[1 + na + {n(n-1)/2}a^2 + {n(n-1)(n-2)/6}a^3]
= 1 + (n+1)a + {(n+1)n/2}a^2 + {(n+1)n(n-1)/6}a^3 + {n(n-1)(n-2)/6}a^4
> 1 + (n+1)a + {(n+1)n/2}a^2 + {(n+1)n(n-1)/6}a^3,
よって n+1 に対しても成り立つ。 (終)
769:132人目の素数さん
20/09/23 17:21:38.02 E50bT1nY.net
ジョーカーを除いた52枚のトランプを混ぜたとき、同色同数のカード(例 ハートの8とダイヤの8等)がまったく隣合わない確率は?
770:132人目の素数さん
20/09/23 18:17:47.36 nbEKtL7T.net
52!
-C[26,1]×2×51!
+C[26,2]×4×50!
+C[26,3]×8×49!
‥
か、なんやろ?
771:132人目の素数さん
20/09/23 19:47:57.49 E50bT1nY.net
>>737
それだとだいぶかぶり出ない?
772:132人目の素数さん
20/09/23 21:59:50.95 nbEKtL7T.net
>>738
n(どの26組も隣り合わない)
=n(全部)
-n(赤1組が隣が合う)-n(赤2組が隣り合う)-‥
+n(赤1組が隣り合い赤2組も隣り合う)+‥
-n(赤1組が隣り合い赤2組も隣り合い赤3組も隣り合う)-‥
なので式は合ってると思う
計算できんけど
773:132人目の素数さん
20/09/23 23:52:15.02 nbEKtL7T.net
とりあえず漸化式はできた
a2=1,a3=5
an=(2n-1)a(n-1)+a(n-2)
で決まる列を取って
n(求) = 26! 2^26 a(26)
aの一般項はbessel関数の香りがする
774:132人目の素数さん
20/09/23 23:54:44.50 ZXia9ND7.net
>>736
プログラム組んでシミュレーションしてみた。
> sim <- function(){
+ x=sample(52)
+ flg=FALSE # same color & number?
+ i=1
+ while(flg==FALSE & i<52){
+ flg <- abs(x[i]-x[i+1])==26
+ i=i+1
+ }
+ return(!flg)
+ }
> mean(replicate(1e6,sim()))
[1] 0.364907
775:730
20/09/24 00:07:15.76 4dVowHqK.net
いろんなやり方があるものですね。
ありがとうございまsた。
776:132人目の素数さん
20/09/24 02:11:02.31 tZusWsqn.net
まともに数え上げたのもΣも漸化式も一致
一般項はBessel関数使えばできるけどそれ以外じゃ無理だろな
import Data.Ratio
c n k = div (product [n-k+1..n]) (product [1..k])
f n = product [1..n]
chooseNext (x,y)
= [(x ++ [(a,b)], [c | c<- y, c/=a,c/=b]) |
a <- y,
b <- y, a +1 < b,
True]
makePairings n = map fst $ (!! n) $ iterate (>>= chooseNext) [([],[1..2*n])]
countPairings n = (flip div (product [1..n])) $ length $ makePairings n
sumExpress n = flip div ((2^n)*(f n)) $sum [(c n k)*(-2)^k*(f $ 2*n-k) | k<-[0..n]]
recurseExpress = map head $ iterate (\[ao,an,n] -> [an,(2*n-1)*an+ao,n+1]) [0,1,3]
p = ( (f 26)*2^26*(recurseExpress!!25)) %( f 52)
main = do
print $ [countPairings n | n<- [1..6]]
print $ [sumExpress n | n<-[1..6]]
print $ take 6 recurseExpress
print $ p
print $ fromRational p
[0,1,5,36,329,3655]
[0,1,5,36,329,3655]
[0,1,5,36,329,3655]
6203831733479827686859697128543 % 170298737928189192841498811
777:08125 0.3642911162439637
778:132人目の素数さん
20/09/24 06:03:25.62 Ncvhvv/n.net
>>743
力作ありがとうございます。
あまりに簡単にシミュレーションできたて
とんでもないバグがあるのではと自信がなかったので
シミュレーションでまずまずの近似でほっとしました。
779:132人目の素数さん
20/09/24 06:43:30.25 A16WYDyE.net
>>661
久しぶりに見たらまだキチガイがいたのかw
毎日スレチェックするストーカー
マウント失敗した哀れな知的障害者は死ね
780:132人目の素数さん
20/09/24 14:44:49.03 FzbCVGmM.net
小学6年生の算数のテスト、難しすぎると話題にwwwwwwwwwwwww
スレリンク(news板)
781:132人目の素数さん
20/09/24 16:37:09.68 kmVMvSEW.net
質問です。eの定義で
自然数nと実数xを無限大に飛ばすとき
(1+1/n)のn乗が収束するのはわかったのですが
だから(1+1/x)のx乗も収束する
と言ってよいのでしょうか
782:132人目の素数さん
20/09/24 16:46:52.77 G+lk41Lj.net
はさみうち
783:132人目の素数さん
20/09/24 17:04:32.49 kmVMvSEW.net
>>748サンクスコ
(1+1/x)のx乗の単調増加性はどう示したらいいですか微分無しで
784:132人目の素数さん
20/09/24 17:21:31.34 G+lk41Lj.net
単調性は別にいらなくて n\le x<n+1 なるnを使って不等式ではさめばいい
785:132人目の素数さん
20/09/24 19:25:10.86 pjumMD0r.net
平方数の周期
1,4,9,6,25,6,9,4,1,00
矩形数の周期
2,6,2,0,0,2,6,2,0,0
三角数の周期
1,3,6,0,5,1,8,6,5,5,6,8,1,5,0,6,3,1,0,0,
786:132人目の素数さん
20/09/24 19:33:20.27 pjumMD0r.net
矩形数は偶数であるが、1の位は決して4と8にはならない。
これを発展させて、
4a+10(2b+1)で表せる自然数がc(c+1)で表せないことを証明する方法はありますか?
787:132人目の素数さん
20/09/24 19:43:03.74 LG7X/eam.net
>>745
粘着キチガイまだ生きてたのかw
自分のマヌケさを恥じて自殺したと思ってたわw
自称高卒のハゲオヤジはいますぐ死ね
788:132人目の素数さん
20/09/24 19:51:09.84 tZusWsqn.net
4×3+10×(2×1+1)=6×(6+1)
789:132人目の素数さん
20/09/25 07:33:40.21 pH41DT8d.net
微分可能な関数f(x)がx=aで極小になるなら
f'(x)はx=aの前後で負から正に変わる
は真ですか。
790:132人目の素数さん
20/09/25 09:32:36.47 C/C9yJEj.net
>>740
a(n) = (1/e)[√(2/π)K_{n+1/2}(1) -i√(2π)I_{n+1/2}(-1)],
ですね。
0, 1, 5, 36, 329, 3655, 47844, 721315, 12310199, 234615096,
4939227215, 113836841041, 2850860253240, 77087063678521,
2238375706930349, ・・・・・
a(26) = 1085 6705533589 6984520044 6997495025 (34桁)
52!/(26!・2^26) = 2980 2279137433 1087472622 9193921875 (34桁)
最大公約数 175 で割れば >>743
791:132人目の素数さん
20/09/25 10:15:49.13 C/C9yJEj.net
>>740
a(n) = |Y_n(-1)|,
URLリンク(oeis.org)
Y_n(-1) = (-1)^n a(n),
URLリンク(oeis.org)
792:132人目の素数さん
20/09/25 10:31:12.60 NCAB/D2+.net
>>755
真です
793:132人目の素数さん
20/09/25 11:14:44.70 C/C9yJEj.net
>>749
微分無しなので xは有理数としよう。
1 + m/n (n個) と 1 (1個) で AM-GM すると
[1 + m/
794:(n+1)]^{n+1} ≧ (1+m/n)^n, m乗根をとると [1 + m/(n+1)]^{(n+1)/m} ≧ (1+m/n)^{n/m}, ∴ x が 1/m の整数倍ならば xについて単調増加。 x = n/m, y = n'/m' なら両方とも 1/(mm') の整数倍。 x が有理数ならば 単調増加。
795:132人目の素数さん
20/09/25 11:41:09.48 C/C9yJEj.net
>>750
n ≦ x < n+1 のとき
(1 + 1/x)^x が (1+1/n)^n と [1+1/(n+1)]^{n+1}
で挟めるかどうか?
それが問題だ・・・・ (ハムレット)
796:132人目の素数さん
20/09/25 14:39:47.26 NycXBiT2.net
興味があるのは極限値だから直接挟む必要はない
n≦x<n+1 とすると 1+1/(n+1)<1+1/x≦1+1/n だから
[1+1/(n+1)]^n<[1+1/x]^n≦[1+1/x]^x≦[1+1/n]^x<[1+1/n]^{n+1} であり
[1+1/(n+1)]^n=[1+1/(n+1)]^{n+1}*[1+1/(n+1)]^{-1}→e*1=1,
[1+1/n]^{n+1}=[1+1/n]^n*[1+1/n]→e*1.
よって [1+1/x]^x→e
とすればいいのだよ
797:132人目の素数さん
20/09/25 14:47:11.72 NycXBiT2.net
e*1=1 じゃなくて e*1=e だね
798:132人目の素数さん
20/09/26 13:44:27.26 O+UEs3n5.net
組合せの数 C[2n,n]がn+1の倍数になることはいえますか?
799:132人目の素数さん
20/09/26 14:14:03.31 s7k88pKY.net
・ n・C[2n,n] = (2n)!/{n!(n-1)!} = (n+1)・C[2n,n-1]
で (n,n+1) は互いに素
・上式から
C[2n,n] = (n+1)(C[2n,n] - C[2n,n-1]),
・Segnerの漸化式
Cat[n+1] = Σ[i=0,n] Cat[i]・Cat[n-i]
帰納法を使う。
800:132人目の素数さん
20/09/26 14:22:20.89 s7k88pKY.net
ここで Cat[n] = C[2n,n] / (n+1) です。(カタラン数)
801:132人目の素数さん
20/09/26 15:25:56.55 O+UEs3n5.net
すぎょい
ありがとう
802:132人目の素数さん
20/09/27 12:31:13.02 WOZMMh6Z.net
昔のメントレG、トキオ、山口メンバーがいた頃の、心理番組なんだけど、
ゲストに菊川玲さんが出演していて、番組スタッフが用意した問題が
Lim ルート(1+X) - ルート(1+Xの二乗)
―――――――― =
X→0 ルート(1-Xの二乗)-ルート(1-X)
ルートが描けんので、上記の様になったのだが、カッコ内は、ルートでくくります
それで、Limというのは、下に書いてある条件をみたせという記号で、
Xを限りなくゼロに近い数字であること、という条件らしく・・・
私は数学は単なる数学パズルだとしか思って居ないが、この質問を考えた人が、不味い!
まず、落ち着いてルートの定義とか、思い出して計算してみて下さい
803:132人目の素数さん
20/09/27 12:35:08.79 WOZMMh6Z.net
X√1 が、問題では無い・・・もっと酷い問題が隠れている出題だ・・・
804:132人目の素数さん
20/09/27 14:48:22.39 UlG8Z9Iz.net
>>767
不味さが味わえない
805:132人目の素数さん
20/09/27 15:20:16.33 FRmmy1iI.net
よくわからんけど、不味くなるようにゴールを動かす問題?
806:132人目の素数さん
20/09/27 15:28:06.22 WOZMMh6Z.net
0に近い数字である事としているのに、答えがゼロになってしまうから。
Xの二乗が、√の外に出る、それが問題でも無く、相殺の関係が2つともなので、
分母がともに、1-1になってしまうから。 答えがゼロになる。 質問が間違っている!
これ、何を期待して作成されてるのか? ゼロに近い数字を求めさせる、なのに答えがゼロ?
807:132人目の素数さん
20/09/27 15:29:10.36 WOZMMh6Z.net
分子も分母も、ともにゼロに成っちゃうよ?
808:132人目の素数さん
20/09/27 15:31:07.54 WOZMMh6Z.net
酔っぱらったときに、高さ、長さ、奥行き、どれも1センチの立方体の体積を求めよ、
の問題にも似ているかと思ったら、やっぱりそれよりも、何か酷いんじゃない?
答え�
809:チて何よ!!
810:132人目の素数さん
20/09/27 15:31:34.50 HB/K0muV.net
1だよ
811:132人目の素数さん
20/09/27 15:39:54.40 4ny0/why.net
>>767
計算してみたら1だな
812:132人目の素数さん
20/09/27 15:48:51.21 UvrSN88Y.net
>>775
体感してみた。
f <- function(x) (sqrt(1+x)-sqrt(1+x^2))/(sqrt(1-x^2)-sqrt(1-x))
> f(1/10)
[1] 0.9463795
> f(1/100)
[1] 0.9949626
> f(1/1000)
[1] 0.9994996
> f(1/10000)
[1] 0.99995
> f(1/100000)
[1] 0.999995
> f(1/1000000)
[1] 0.9999995
813:132人目の素数さん
20/09/27 15:54:17.35 UvrSN88Y.net
>>776
グラフにして体感
URLリンク(i.imgur.com)
814:132人目の素数さん
20/09/27 15:56:52.56 UvrSN88Y.net
>>777
[-1,1]でグラフ化
URLリンク(i.imgur.com)
815:132人目の素数さん
20/09/27 16:53:01.77 WOZMMh6Z.net
>>771
多分、出題者は答えが1であると思った筈だが。
分母と分子を見ると、2つとも同じ√の値で出題している。
それで、予め√内の二乗のXを√の外に出した所で、
相殺されるだろ?1に。 それが、2つとも・・
で、分母と分子ともども、1引く1と成って居る。
なので、答えがゼロ ゼロに限りなく近い数字というと?と
矛盾が出てきてしまう。
816:132人目の素数さん
20/09/27 16:54:08.31 WOZMMh6Z.net
>>774
それ、1立方cmの事か?
それとも、あの√の計算か? なら、計算が間違っている
817:132人目の素数さん
20/09/27 16:56:05.67 4ny0/why.net
>>775
f(x)=(√(1+x)-√(1+x^2))/(√(1-x^2)-√(1-x))
分母子に√(1-x^2)+√(1-x)をかけて
分子=(√(1+x)-√(1+x^2))*(√(1-x^2)+√(1-x))=分子前半 * 分子後半
分母=(√(1-x^2)-√(1-x))(√(1-x^2)+√(1-x))= 1-x^2 - (1-x) = x * (1-x)
f(x)= {分子前半 /x)} * {分子後半/(1-x)}
分子前半/x = (√(1+x)-√(1+x^2))/x = {1+x -(1+x^2)}/{x*(√(1+x)+√(1+x^2))}
= {x-x^2}/{x*(√(1+x)+√(1+x^2))}
=(1-x)/(√(1+x)+√(1+x^2))→1/2(x→0)
分子後半/(1-x)=(√(1-x^2)+√(1-x))/(1-x) →2 (x→0)
f(x)→1/2*2=1
818:132人目の素数さん
20/09/27 17:45:18.71 UlG8Z9Iz.net
>>771
つまらん
819:132人目の素数さん
20/09/27 18:34:04.27 SjoNJm0S.net
論理式の読み方を教えてほしい
例えば、¬∃x(Fx ∧Gx)と同値の論理式はなにか?
みたいな問題文はどうやって読むの?
「ノットターンイーエックス、カッコ、エフエックスかつ…」みたいな読みかた?
820:132人目の素数さん
20/09/27 19:13:58.05 Icw3M2lI.net
Fx と Gx を同時に満たす x が存在することの否定
と同値の論理式は
任意の x に対して Fx でないか Gx でない
821:132人目の素数さん
20/09/27 19:24:05.55 SjoNJm0S.net
>>784
ありがとう!
822:132人目の素数さん
20/09/27 19:47:40.08 KUYhS5B5.net
>>783
>ターンイー
こう読む人いない
それガンダムじゃね?
823:132人目の素数さん
20/09/27 19:49:25.08 KUYhS5B5.net
URLリンク(en.wikipedia.org)
824:132人目の素数さん
20/09/27 23:27:46.00 2TOXLa+k.net
>>786
ターンイーって読んでるがではなんと読む?
825:132人目の素数さん
20/09/28 02:34:01.35 VdFe70Zi.net
{√(1+x) - √(1+y)} / {√(1-y) - √(1-x)}
= {(1+x) - (1+y)} / {√(1+x) + √(1+y)}・{√(1-y) + √(1-x)} / {(1-y) - (1-x)}
= (x-y) / {√(1+x) + √(1+y)}・{√(1-y) + √(1-x)} / (x-y)
= {√(1-y) + √(1-x)} / {√(1+x) + √(1+y)}
= 1 - (x+y)/2 + (x+y)^2 /8 - (x+y)(xx+yy) /8 + (7xx-2xy+7yy)(x+y)^2 /128 - ・・・・
≒ 1 - (x+y)/2 + (x+y)^2 /8 - (x+y)^3 /16 + 3(x+y)^4 /128 - ・・・・
= √{(2-x-y)/(2+x+y)},
826:132人目の素数さん
20/09/28 03:30:05.12 eZEeBNwX.net
円を表す方程式が2つあって、その2交点を通る図形の式を求めよ。
という問題で、例えば三角関数とかも有り得ると思うんだけどなんで直線と円のみを表せば正解になるんですか?
827:132人目の素数さん
20/09/28 09:09:52.99 m99WeV5p.net
>>790
もし本当にそんな問題ならそれでは正解にならないでしょ
問題と模範解答をキャプって見せてもらえる?
828:132人目の素数さん
20/09/28 13:54:03.84 VdFe70Zi.net
円を表す方程式:
(x-a)^2 + y^2 = b^2,
(x+a)^2 + y^2 = c^2,
の交点
( (cc-bb)/4a, ±√[(bb+cc)/2 - aa - {(cc-bb)/4a}^2] )
と
(-a-c,0) (a+b,0)
を通る楕円:
(x+a+c)(x-a-b) + yy/(1-ee) = 0,
ee = 4a/(b+c+2a),
とかもありますね。
(2つの円の合併に包含される最大の楕円?)
829:132人目の素数さん
20/09/28 14:06:18.39 HUnaBctf.net
方程式の線形結合に限定だろ
830:132人目の素数さん
20/09/28 20:22:49.47 21Y0RiqJ.net
絶対値って何で出てくるの?
どんなジャンルでも隙あらば絶対値が出てきて問題をめんどくさくして数学嫌いな生徒を生産する
831:132人目の素数さん
20/09/28 20:57:09.10 21Y0RiqJ.net
式と計算、方程式、不等式、集合と論理
どんな単元でも出て来る絶対値、本質の理解を妨げる攪乱要素
希望を持って数学を学ぼうとしている若者にパワハラのように立ちはだかる絶対値
めんどくさい思考を抹殺するのが数学の目的なのに
めんどくさい要素をどんどん追加する絶対値
832:132人目の素数さん
20/09/28 21:01:13.27 21Y0RiqJ.net
絶対値のおかげで人間は文化的な生活を享受できるの?
絶対値のおかげで人間は幸せになれるの?
なわけないだろう、絶対値を数学Ⅰaから追放しようよ
833:132人目の素数さん
20/09/28 21:38:23.60 kJ+zI08Z.net
URLリンク(sousin19.holy.jp)
834:132人目の素数さん
20/09/28 21:46:34.02 no+v2tdw.net
>>794-796
受験問題みたいなゴミに使われてるから邪魔扱いされるなんてお門違いの極致だなあ。
835:132人目の素数さん
20/09/28 22:51:09.63 A1FJPZgp.net
直交座標表示でも極座標表示でも表せる事が表現の豊かさ(文学的な意味では無く理学的な意味)だろ
学習時は面倒でもプロの現場では其れが便利に成る事も有る事くらい気が付け
尤もらしい物言いで口実造りしてサボり逃げを正当化してんじゃねーよ
836:132人目の素数さん
20/09/28 23:38:50.76 bS+F7sty.net
自分が絶対値を理解できない→絶対値は役に立たない
wwwwwwwwwwwwwwwwwwwwwwwwww
837:132人目の素数さん
20/09/28 23:45:20.10 PcTcLaOM.net
>>788
>>787も見ないのな
838:132人目の素数さん
20/09/28 23:51:31.80 PcTcLaOM.net
URLリンク(www.compart.com)
URLリンク(www.compart.com)
・アニメ『∀ガンダム』では「∀」を「ターンエー Turn A 」と読ませていますが、これは創作上の設定です。
839:132人目の素数さん
20/09/29 00:19:42.71 S7ihJDdE.net
サイコロを4つ振った時に
6が2個以上出る確率ってどうやって求めればいいの?
840:132人目の素数さん
20/09/29 00:34:08.75 Q1LeNDVA.net
つ余事象
841:132人目の素数さん
20/09/29 00:38:02.64 +qfFHAwk.net
6が1個も出ないか、1個だけは出る、のどちらかが起こる確率を求めて、その値を1から引く。
1個も出ない確率は(5/6)^4、
1個だけ出る確率は (4C1)(1/6)(5/6)^3=(4*5^3)/6^4
あとは自分でやれ。
842:132人目の素数さん
20/09/29 02:32:27.94 t87o74EC.net
やらねえよ
843:132人目の素数さん
20/09/29 03:28:56.23 /PIEwd8l.net
円を表す方程式:
(x-a)^2 + yy = bb,
(x+a)^2 + yy = cc,
の交点
( (cc-bb)/4a, ±S(2a,b
844:,c)/a ) と (-a+c,0) (a-b,0) を通る楕円: (x+a-c)(x-a+b) + (1-ee)yy = 0, ee = 4a/(b+c+2a), は >>792 と相似ですね。相似比 √(1-ee), (2つの円の共通部分を包含する最小の楕円?) * 交点の1つ と 2つの円の中心 を頂点とする三角形 を考えると、辺長が (2a,b,c) S(2a,b,c) = (1/4)√{(2a+b+c)(-2a+b+c)(2a-b+c)(2a+b-c)},
845:132人目の素数さん
20/09/29 04:53:57.77 /PIEwd8l.net
2つの円の交点 (x。, ±S(2a,b,c)/a)
x。= (cc-bb)/4a,
2つの交点を通る楕円:
{(x-x。)/[k(2a+b-c)] -1}{(x-x。)/[k(2a-b+c)] +1} + (a/S)^2・yy = 0,
k>0,
>>792, >>807 を含む。
x軸との交点
(x。+ k(2a+b-c), 0) (x。- k(2a-b+c), 0)
縦半径 (1/2)(2a+b+c)√(1-ee),
横半径 2ka,
846:132人目の素数さん
20/09/29 08:37:25.35 bM7Tn4fW.net
多分、中学程度の問題だと思うのですが
8-3
ーーー の、整数を求めよ これは、問題としてありなのですか? それと答えは?
-8
847:132人目の素数さん
20/09/29 08:40:42.11 bM7Tn4fW.net
あの、整数という表現は当たりなのかどうか、忘れましたが、
分母と分子表記では無く、数字?に置き換えて答えを求めよ、なのですが、
それを、整数として表現して良いのですか?
整数って、なんでしたっけ?
848:132人目の素数さん
20/09/29 08:43:49.39 gY8LVLn1.net
ここは高校数学の質問スレだよ
849:132人目の素数さん
20/09/29 13:58:12.03 jojL8AlZ.net
0<3 も 0<5 も 3<7 も真の命題であってますよね
それで、
命題"(0<3) ∧ (0<5)" は真の命題?偽の命題?
これは0<3の範囲をもち成り立つので真の命題だと私は答えます
命題"(0<5) ∧ (3<7)" は真の命題?偽の命題?
これは3<5の範囲をもち成り立つので真の命題だと私は答えます
命題"(0<3) ∧ (3<7)" は真の命題?偽の命題?
これは範囲をもたず成り立たないので偽の命題だと私は答えます
でも、真理値表だと真 ∧ 真 って真じゃないですか?
このへんがよく分かりません
これって真理値表の使い方が何か間違っているのかな?
命題"(0<3) ∧ (3<7)"とは
"(0<3) ∩ (3<7)"のことと考えて(であってる?)空集合になる
空集合だから?ともに満たす値がないから?命題は成り立たない?ん〜よく分からない?
命題"(x>0) ∧ (x>5)" は真の命題?偽の命題?
これはx>5を満たすとき命題が成り立つので真の命題だと私は答えます
たぶん、
満たすと成り立つの違いがよく分かっていないんだと思うんです
満たすって、条件に対してつかいますよね
成り立つって、命題に対して使いますよね
(↑この使い方であっていますか?このへんも自信がない)
でも実際は、
x=3 は条件のはずなのに、
「x=3を満たすとき」ではなく「x=3が成り立つとき」と言ったりしませんか?
x>0 は条件のはずなのに、
「x>0を満たすとき」ではなく「x>0が成り立つとき」と言ったりしませんか?
このように、分からない事がふわっとしてて上手く説明できない状態なのですが
どなたか易しく教えて下さい
850:132人目の素数さん
20/09/29 15:05:28.22 Z2NNaelm.net
誰か教えて
URLリンク(detail.chiebukuro.yahoo.co.jp)
851:132人目の素数さん
20/09/29 16:27:19.04 SJIp1RF6.net
>>800
理解できるわ 場合わけとかめんどくさい土方みたいなことやらせるなってこと
852:132人目の素数さん
20/09/29 21:01:13.44 a1+Kawn1.net
>>803
(1)目の出方を全部書き出して数える
(2)100万回くらいサイコロを投げて数える
853:132人目の素数さん
20/09/29 21:29:02.84 a1+Kawn1.net
>>815
やってみた。
> # 総当たり
> dice4 <- function(num, N=6, digit = 4){
+ r=num%%N
+ q=num%/%N
+ while(q > 0 | digit > 1){
+ r=append(q%%N,r)
+ q=q%/%N
+ digit=digit-1
+ }
+ return(r+1)
+ }
>
> re=0
> for(i in 0:(6^4-1)){
+ d=dice4(i)
+ re <- re + (sum(d==6)>=2) # 2個以上6の目があるか?
+ }
> re
[1] 171
> 6^4
[1] 1296
> 171/1296
[1] 0.1319444
>
> # 1億回シミュレーション
> mean(rbinom(1e8,4,1/6)>=2)
[1] 0.1319338
854:132人目の素数さん
20/09/29 21:40:04.52 a1+Kawn1.net
>>813
3人の死刑囚問題の類題かな?
855:132人目の素数さん
20/09/29 21:51:33.56 a1+Kawn1.net
1 -((5/6)^4+4*(1/6)*(5/6)^3)
=0.131944444444
856:132人目の素数さん
20/09/29 22:04:21.54 ecnNfSlL.net
>>813
誰もこの問題できないのかな?
このスレも大したことないねぇ
857:132人目の素数さん
20/09/29 22:25:02.75 5TPopoUu.net
また来たのか
858:132人目の素数さん
20/09/29 23:21:17.43 5witW7hT.net
下らないからやらない
859:132人目の素数さん
20/09/29 23:23:05.70 Z2NNaelm.net
>>820
>>821
言い訳、難癖で自分ができないことを隠したいんですか?
860:132人目の素数さん
20/09/29 23:24:27.25 HFn0x5ha.net
大した事ないで桶
861:132人目の素数さん
20/09/29 23:30:10.03 Z2NNaelm.net
面白いですね、皆素直に分からないと言えない
怖くて解答できない
強がるのみ笑
862:132人目の素数さん
20/09/30 00:18:34.59 7jkavv0m.net
言えますよ?
わかりません
悔しいなぁ
863:132人目の素数さん
20/09/30 00:31:45.21 H5/LbJMb.net
>>812
勝手な解釈するもんだな
0<5は命題
範囲ではない
範囲は
{x|0<x<5}
864:132人目の素数さん
20/09/30 00:34:35.87 z8ygvCQN.net
>>825
この問題、結構難しいと思います
何となくは解けるんだけど、もやもやが残ってなんかスッキリしないんですよ
でも、スッキリできる方法があるんです
865:132人目の素数さん
20/09/30 05:50:50.31 fmOlkQ9c.net
>この時点では見えなかったもう1枚は表か裏かは分からないので、両方とも表である確率は1/2ということになります。
ここが間違い。
表表 表裏 裏表 裏裏のうち裏裏の可能性が0になるだけだから
表表の確率は1/3
866:132人目の素数さん
20/09/30 06:00:03.28 fmOlkQ9c.net
Bが二つのコインを区別できて
どちらのコインが表であるかをチラ見できたなら確率は1/2
これはシャッフル後も変わらない。
867:132人目の素数さん
20/09/30 06:11:57.43 fmOlkQ9c.net
>>796
複素数の絶対値があることで交流電気の計算が楽にできて
文化的な生活を享受できている。
868:132人目の素数さん
20/09/30 06:29:54.58 z8ygvCQN.net
>>828
>>829
難しいでしょう?
869:132人目の素数さん
20/09/30 06:32:56.51 fmOlkQ9c.net
>>831
何が難しいか考える方が難しいw
870:132人目の素数さん
20/09/30 06:37:13.00 z8ygvCQN.net
>>832
あ、もちろんあなたの解答は大間違いですからね?
まんまとハマってくれてありがとうございます笑
871:132人目の素数さん
20/09/30 07:23:04.78 QTPViaGv.net
>>812
>命題"(0<3) ∧ (0<5)" は真の命題?偽の命題?
>これは0<3の範囲をもち成り立つので真の命題だと私は答えます
命題"(0<3) ∧ (0<5)" は真の命題ではありますが、その理由は「0<3の範囲をもつから」ではありません。ここが誤りです。
"0<3"が真であり、"0<5"が真であるから"(0<3) ∧ (0<5)"が真である。これが理由です。
>命題"(0<3) ∧ (3<7)"とは
>"(0<3) ∩ (3<7)"のことと考えて(であってる?)
あっていません。∩は集合の演算子であって命題に∩を用いるのは誤りです。"0<3"や"3<7"は命題であって集合ではありません。
>満たすって、条件に対してつかいますよね
>成り立つって、命題に対して使いますよね
"満たす"は条件に対して使いますが、"成り立つ"は条件にも命題にも使います。"x>0 のとき常に x^2+3x>0 が成り立つ"というのは普通の表現でしょう。
そしてこのことは>>812の前半の内容とは何の関係もありません。
872:132人目の素数さん
20/09/30 07:58:11.81 an5WrdKz.net
見えたコインを◎、見えなかったコインを○or×とする
◎×
×◎
◎○
○◎
の4通り
873:132人目の素数さん
20/09/30 08:03:52.44 z8ygvCQN.net
>>835
そのような記述をするのであれば、先にそれらが等確率であることを証明しなければなりません
そして何か直感的じゃないんですよね
言いたいことはわかりますけど
もやもやが晴れないというか
874:132人目の素数さん
20/09/30 09:14:48.97 i3jNA3L8.net
>>828
表表 表裏 裏表の事象が等確率で発生するとしてしまったのが間違い
表裏 裏表 の事象が発生していた場合そのうちの片方をチラ見した時にそれが表である確率は50%
表表 の事象が発生していた場合そのうちの片方をチラ見した時にそれが表である確率は100%
片方をチラ見した時にそれが表であるという条件下では表裏 裏表と比べて表表の方が2倍可能性が高い
表表1/2 表裏1/4 裏表1/4
875:132人目の素数さん
20/09/30 09:22:27.52 z8ygvCQN.net
>>837
確率の比からまた確率を算出するというのは何だか変ではないですか?
少なくともあまり論理的ではないし、もやもやが晴れません
何となく言いたいことはわかりますが
876:132人目の素数さん
20/09/30 09:39:18.89 +AAQs/77.net
> 確率の比からまた確率を算出する
まんま条件付き確率じゃん、高校数学の範囲内だぞ
877:132人目の素数さん
20/09/30 09:43:46.51 i3jNA3L8.net
>>838
全事象カウントしないと理解しづらいなら
表表 見たのが表
表裏 見たのが表
裏表 見たのが裏
裏裏 見たのが裏
表表 見たのが表
表裏 見たのが裏
裏表 見たのが表
裏裏 見たのが裏
これらが等確率で起こる
見たのが裏の可能性が0になるだけだから
つまり>>835
表表の確率は1/2
878:132人目の素数さん
20/09/30 09:48:38.39 z8ygvCQN.net
うーん…何とも言えない洗練されてない感…
条件付確率とはまた違いますよ
>表裏 裏表 の事象が発生していた場合そのうちの片方をチラ見した時にそれが表である確率は50%
>表表 の事象が発生していた場合そのうちの片方をチラ見した時にそれが表である確率は100%
ここまではスマートじゃないけどまあありとしても、
>片方をチラ見した時にそれが表であるという条件下では表裏 裏表と比べて表表の方が2倍可能性が高い
これに論理展開してるのがおかしいんですよね
この割合が常に一定である証明が必要になってきます
気持ちはわかりますけどね
879:132人目の素数さん
20/09/30 09:55:18.02 z8ygvCQN.net
>>840
正解!
おめでとう!!
簡単に見えるけど、これを導いたのあなたが初めてですよ!!
色んなとこに貼ったのでかなりの人数が挑戦してるはずです(知恵袋の閲覧数も100人越えてます)
根元事象に見た方を含める、この発想が皆さん意外とできないんですよね
ついついコインの表裏しか書かないんです
だから等確率でない事象で比べてぐちゃくちゃになってしまう
素晴らしい!
ありがとうございました!
良ければ知恵袋などでは言わないでもうしばらく黙っててください
880:132人目の素数さん
20/09/30 10:02:50.74 z8ygvCQN.net
>>840
ん、よく見ると記載方法はちょっと分かりにくいというかよろしくないですね笑
でも明らかな記載ミスであることはわかるので、このままにしておいてください
あなたが理解してることは十分わかりますので
881:132人目の素数さん
20/09/30 11:56:23.76 YVK3gqEb.net
ちゅうか無いものを考えて複雑にする必要なくない?
問われたのは見てないもう1枚が表か裏かというだけのことで
後半の操作はまったく意味がないから無視して構わない
882:132人目の素数さん
20/09/30 12:59:40.04 GFi1BvhY.net
>>844
確率を求めるだけならそれでいいんだけど、後半の操作を考慮する必要がない場合はなぜそう言えるのかを説明しろという出題なので
883:132人目の素数さん
20/09/30 13:16:47.88 fxRetSa8.net
0<a<b<c<1に対して
x=a-ab+bc
y=b-bc+ca
z=c-ca+ab
とするとき
max(x,y,z)-min(x,y,z)<c-a
を言うにはどうすればいいですか。
884:132人目の素数さん
20/09/30 13:32:53.05 YVK3gqEb.net
>>845
ついさっきアメリカでマイクという男が撃たれたんだが、きみの今日の仕事に支障が出ないか心配だよ!
と言われても「は?」としか思わないけどなぁ
前半が間違っていると答えた人がいるからミスリードの効果はあったんだ�
885:�うけど
886:132人目の素数さん
20/09/30 13:44:39.27 I+tRUEgl.net
>>844
確かに仰ることは一理あるのですが、>>845さんの言うとおりシャッフルが意味がないという証明がなされていない上でどう解くかという問題です
逆にあなたの考えではこれは解けなくなってしまいますよ
あなたには別の問題をあげましょう
同様のコインゲーム中に
1回目)B君はどちらか分からないが少なくとも片方は表であることが見えた
2回目)その場に居合わせた透視少年に少なくとも一枚は表であると教えてもらった
さて、二枚とも表である確率は同じ?違う?
887:132人目の素数さん
20/09/30 13:56:13.11 I+tRUEgl.net
>>848
すみません、ちょっと日本語が変ですね
こうした方が自然かな
同様のコインゲーム(A君が二枚のコインを投げるだけ)中に
1回目)B君はどちらのコインかは分からないが一枚は表であることが見えた
2回目)その場に居合わせた透視少年に少なくとも一枚は表であると教えてもらった
さて、二枚とも表である確率は同じ?違う?
888:132人目の素数さん
20/09/30 14:06:53.84 GFi1BvhY.net
1/2、1/3
889:132人目の素数さん
20/09/30 14:09:40.35 I+tRUEgl.net
>>850さんの解答は1/2,1/3ですね
>>844さんはどう思われますか?
890:132人目の素数さん
20/09/30 14:18:14.87 YVK3gqEb.net
>>849
1回目の場合はどちらが表かをBが把握しているので2パターン
2回目の場合は透視君が表だと言ったのがどちらなのか、Bにはわからないので3パターン考える必要がある
891:132人目の素数さん
20/09/30 14:19:45.45 I+tRUEgl.net
>>852
一回目でも、B君はどちらが表であったかは全く把握してませんよ?
892:132人目の素数さん
20/09/30 14:44:12.60 YVK3gqEb.net
>>853
読み間違えた
確かに1と2の区別がつかなくなるな
893:132人目の素数さん
20/09/30 14:47:36.95 I+tRUEgl.net
>>854
この問題の面白さはそこなんです
>>813も>>849も表現を変えただけのほぼ同一の問題です
894:132人目の素数さん
20/09/30 14:54:37.63 b4OHFvZl.net
>>846
x = a(1-b) + bc,
y = b(1-c) + ca,
z = c(1-a) + ab,
から
a < x < c,
a < y < b < z < c,
は出るだろうが・・・・
くだらんスレ
スレリンク(math板:534番)-541
895:132人目の素数さん
20/09/30 15:21:09.40 fxRetSa8.net
naruほど
xはaとcをb:1-bに内分する値とみれるのですね。
手掛かりになり層dす
896:132人目の素数さん
20/09/30 16:20:35.25 /jGvi/PL.net
>>946
あと10日ほどで答え上がるやろ
URLリンク(www.web-nippyo.jp)
897:132人目の素数さん
20/09/30 22:28:11.34 dcBtBNx1.net
>>837
ご教授ありがとうございました。
898:132人目の素数さん
20/09/30 22:33:45.08 fmOlkQ9c.net
シミュレーションしてみた。
> sim <- function(){
+ x=rbinom(2,1,1/2) # コインを2枚投げる
+ y=sample(x,1) # そのうち1枚を選ぶ(チラ見コイン)
+ c(y==1,sum(x)==2) # チラ見コインが表か?2枚が表か?を返す
+ }
> k=1e7
> z=replicate(k,sim()) # k回コインを投げる
> n=ncol(z[,z[1,]==TRUE]) # チラ見コインが表の試行数
> m=ncol(z[,z[1,]==TRUE & z[2,]==TRUE]) # そのうち2枚が表の試行数
> m/n
[1] 0.5000268
899:132人目の素数さん
20/09/30 22:34:02.47 fxRetSa8.net
>>858 ??? 埼大の過去問ですが。
x,y,zのどれが最大になるかをa,b,cの値で場合分けして考えようとしましたが
単に x<c, y<c, z<c, a<x, a<y, a<z を示せばよいのですね。いずれも差をとればすぐ示せsました。
900:132人目の素数さん
20/09/30 23:24:49.13 NWlWhz86.net
>>861
マジか?
エレガントは埼玉大学の問題のパクリ(というか発展形?)
何年?
901:132人目の素数さん
20/10/01 05:47:04.24 n2o6aWK1.net
>>946 は
あと10日ほどで答え上がる問題を出すこと。
902:132人目の素数さん
20/10/01 16:49
903::12.38 ID:vwnQy6e7.net
904:132人目の素数さん
20/10/01 17:15:32.45 msoa7lOI.net
>>826
>0<5は命題範囲ではない 範囲は{x|0<x<5}
"0<5"は"0は5より小さい"という真の命題
条件"0<x<5"を満たす範囲 ⇔ {x|0<x<5}
条件"0<x<5"を満たすときxが取り得る値全ての集合 ⇔ {x|0<x<5}
という事ですね
905:132人目の素数さん
20/10/01 17:24:26.60 msoa7lOI.net
>>814
>"0<3"や"3<7"は命題であって集合ではありません。
>"0<3"が真であり、"0<5"が真であるから"(0<3) ∧ (0<5)"が真である。これが理由です。
真の命題"0<3"や真の命題"3<7"は範囲や集合ではないので
命題"(0<3) ∧ (3<7)" は 真かつ真 と考えて真の命題
条件や範囲や集合同士での演算については
命題"(x<3) ∧ (3<x)"は共に満たす範囲が存在しないので偽の命題
これを"{x|x<3} ∩ {x|3<x}"が空集合なので偽の命題となると考え、
偽の命題"(x<3) ∧ (3<x)" ⇔ 偽の命題"∃x([x<3] ∧ [3<x])"
そして、
命題"(0<x) ∧ (3<x)"は共に満たす範囲が 3<x となり真の命題
これを"{x|0<x} ∩ {x|3<x}"を満たす{x|3<x}(に真となる要素)が存在するため真の命題と考え、
真の命題"(0<x) ∧ (3<x)" ⇔ 真の命題"∃x([0<x] ∧ [3<x])"
のように考えてみたのですが変ではないですか?
つづく