20/08/22 07:59:53.08 qg6YAvVW.net
>>526 補足
もう一度、零因子と逆元との関係を纏めておこう
まず、実数Rを成分とするn×n正則行列全体の成す一般線形群GLn(R)については、下記ご参照
1.n×n行列全体の成す行列環 Mn(R) で、ここには0(零行列)と零因子が含まれている
2.Mn(R) から 0(零行列)と零因子を除けば、n×n正則行列全体の成す一般線形群GLn(R)になる
3.行列環 Mn(R) においては、零因子か(逆元を持つ)正則行列かは、その行列式で分けられる
即ち、行列A∈Mn(R)で、行列式|A|=0なら零因子、行列式|A|≠0なら正則行列となる
だから、零因子で無ければ、(逆元を持つ)正則行列である
だから、n×n行列全体の成す行列環 Mn(R) において、零因子と正則行列は、密接に関係しているのです!(^^
(参考)
URLリンク(en.wikipedia.org)