20/08/20 00:25:15.67 gmO23IhH.net
>>449
つづき
Division rings differ from fields only in that their multiplication is not required to be commutative. However, by Wedderburn's little theorem all finite division rings are commutative and therefore finite fields. Historically, division rings were sometimes referred to as fields, while fields were called "commutative fields".[5]
All division rings are simple, i.e. have no two-sided ideal besides the zero ideal and itself.
Main theorems
Wedderburn's little theorem: All finite division rings are commutative and therefore finite fields. (Ernst Witt gave a simple proof.)
Frobenius theorem: The only finite-dimensional associative division algebras over the reals are the reals themselves, the complex numbers, and the quaternions.
Related notions
Division rings used to be called "fields" in an older usage. In many languages, a word meaning "body" is used for division rings, in some languages designating either commutative or non-commutative division rings, while in others specifically designating commutative division rings (what we now call fields in English). A more complete comparison is found in the article Field (mathematics).
The name "Skew field" has an interesting semantic feature: a modifier (here "skew") widens the scope of the base term (here "field"). Thus a field is a particular type of skew field, and not all skew fields are fields.
While division rings and algebras as discussed here are assumed to have associative multiplication, nonassociative division algebras such as the octonions are also of interest.
A near-field is an algebraic structure similar to a division ring, except that it has only one of the two distributive laws.
(引用終り)
以上