20/08/19 07:55:23 BSgO+qBk.net
>>428
つづき
イデアルIの内部では、行列加法の群が成立つので
klの組を集めて、その和から単位行列Eができる
E∈ I 成立
イデアルの定義から
ER=R つまり、R⊂Iで、I⊂RだからI=Rです
QED
なるほど、行列単位Eijを使うのがキモですな
それを使って、
「 0 ≠ A = (aij) ∈ I とすると、ある aij は 0 ではない」から
任意の行列単位Eklが、行列の積を使って構成できる。行列の積がキモ
あとは、いろいろあるだろう
上記の単位行列Eを構成するのも分り易いかな
(^^
以上