純粋・応用数学(含むガロア理論)3at MATH
純粋・応用数学(含むガロア理論)3 - 暇つぶし2ch449:現代数学の系譜 雑談
20/08/18 11:34:08.40 6E5Q9lbT.net
>>371 補足
環における 零因子と逆元の関係
下記の全商環に全部書いてあるね
いろいろ書いてあるが、大体思っていた通りだな
(参考)
URLリンク(ja.wikipedia.org)
全商環
全商環(ぜんしょうかん、英: total quotient ring[1])あるいは全分数の環 (total ring of fractions[2]) は、整域に対する商体の構成を、零因子をもつ可換環に対して一般化するものである。この構成は、可換環に対して、その非零因子の「逆元」を付け加えて、より大きな環を作り出す操作になっている。零因子を可逆化することはできない[* 1]ので、全商環はもうこれ以上逆元を加えて拡大することはできないものになっている。このことから、全商環は「可能な限り逆元を付け加えた」という意味で最大の環である。
注意
1^ a が R の零元と異なる零因子で、a が R の全商環 Q の中で単元となると仮定すると、R の零元でない元 b で ab = 0 を満たすものと、Q の元 c で ca = 1 を満たすものとが存在することになるが、 0 = c(ab) = (ca)b = b となり、b が零元でないことに反する。従って R の零因子を Q の単元にすることはできない。
定義
R が可換環のとき、S を R における非零因子全体の成す集合とすれば、S は R の零元を含まない R の積閉集合(乗法に関して閉じているような R の部分集合)である。従って、環 R の S による局所化として、全商環 S-1R が得られる。可換環 R の全商環をしばしば Q(R) とも表す。
R が可換整域ならば、非零因子の全体は S = R* (= R - {0}) であり、全商環は R の商体に一致する。整域 R の商体を Q(R) と表すことがあるが、整域の全商環と商体が一致するという事実から、単に Q(R) と書いた場合にいず�



次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch