20/08/16 19:45:18 0IMtsn2Y.net
>>348
つづき
定理 1.2.12 (積の逆行列). 正方行列 A, B に逆行列 A^-1
, B^-1 が存在するとき積 AB に
も逆行列が存在し,それは次で与えられる.
(AB)^-1 = B^-1A^-1
第 2 章 行列式 27
P42
2.3.3 余因子行列
定理 2.3.7
正方行列 A に対し,AA* = A*A = det(A)E を満たす行列 A* が存在する.余因子行列である.
定理 2.3.6. AA* = A*A = det(A)E
証明 略
系 2.3.7 (行列の逆転公式). 正方行列 A が det(A) ?= 0 を満たせば逆行列 A^-1 が存在し
それは次式で与えられる.
A^-1 =1/det(A) A*
証明. AA* = A*A = det(A)E を det(A) で割れば良い.
P44
2.4 積の行列式
2.4.1 積の行列式
行列式に関する次の定理は基本的である.
定理 2.4.1 (積の行列式). n 次正方行列 A = (ai,j ), B = (bj,k) に対し
det(AB) = det(A) det(B).
系 2.4.2. 正方行列 A が逆行列をもつ必要十分条件は det(A)≠ 0.
証明. det(A) ≠ 0 ならば逆行列が存在する事は既に見た(定理 2.3.7).A が逆行列 A^-1
をもてば1 = det(E) = det(AA^-1) = det(A) det(A^-1)
よって,det(A)≠ 0.
この証明より det(A^-1) = 1/det(A) も分かる.
URLリンク(ja.wikipedia.org)
行列式
(抜粋)
7 行列式の性質
7.1 固有値との関係
URLリンク(en.wikipedia.org)
Determinant
(引用終り)
以上