20/08/16 14:22:06 2xkr/j04.net
>>332
なんだ、このバカ、まだ>>200の証明の誤りに気づけないんだ
>1.逆行列の公式:A^-1=1/|A| t[Aij] (正則行列の場合)
然り
(上記1を式変形して)
>2.A・t[Aij] =|A| E(正則行列を含む全正方行列の場合)
然り
>3.正則行列とは、|A|≠0
>(行列式|A|≠0。これは、逆行列の公式より直ちに出る)
然り
>つまりは、「”Aが正則”と”Aは零因子ではない”は、同値」は、
>上記の3点を理解していれば、直ちに導かれるのです
誤り
まず、行列環の場合(注:一般の環では決して成立しない!)
行列の性質により(注:だから一般の環では成立しない!)
「”Aが正則”と”Aは零因子ではない”は、同値」
し・か・し、|A|=0の場合の
A・t[Aij] =O (Oは零行列)
では、Aが零因子であることの証明にはならない
な・ぜ・な・ら、Aが零行列でなくても
t[Aij]が0行列となる場合があるから
たとえば行列
(1 1 1)
(1 1 1)
(1 1 1)
はどうみたって零行列ではないが
余因子行列を計算すれば零行列になる
ウソだと思うなら計算してみろwww
◆yH25M02vWFhPは線形代数の基礎も分からん馬鹿
大学1年からやり直せ 微積分も線形代数も分からん数盲、いや論理盲め