純粋・応用数学(含むガロア理論)3at MATH
純粋・応用数学(含むガロア理論)3 - 暇つぶし2ch354:132人目の素数さん
20/08/16 06:57:09.06 2xkr/j04.net
A は n×n 行列
A の ij 成分を aij と書く
行列式は以下の式で定義される
「行列式1」
detA=買ミ∈Snsgn(σ)∏i=1naiσ(i)=買ミ∈Snsgn(σ)a1σ(1)a2σ(2)⋯anσ(n)
σ は 1 から n の置換(順列)を表す。
買ミ∈Sn は,「n 次の全ての置換に関して和を取る」ことを表す。
sgn(σ) は置換の符号を表す。
奇置換なら-1,偶置換なら+1 。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch