純粋・応用数学(含むガロア理論)3at MATH
純粋・応用数学(含むガロア理論)3 - 暇つぶし2ch326:132人目の素数さん
20/08/14 19:30:47.93 tstI7/Nb.net
>>286
>モノイドは圏の特別なクラスと看做すことができる。
>実際、モノイドにおいて二項演算に課される公理は、
>圏において(与えられたただ一つの対象を始域および終域とする
>射の集合だけで考えれば)射の合成に課される公理と同じである。
さらに、射を同型射だけに制限すれば、群になる
射 (圏論)
URLリンク(ja.wikipedia.org)(%E5%9C%8F%E8%AB%96)
単射: 射 f: X → Y が単射 (mono-morphism) であるとは、
   f ∘ g1 = f ∘ g2 ならば g1 = g2 が
   



次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch