純粋・応用数学(含むガロア理論)3at MATH
純粋・応用数学(含むガロア理論)3 - 暇つぶし2ch276:現代数学の系譜 雑談 ◆yH25M02vWFhP
20/08/13 07:39:11 bF50UmjA.net
>>238
>結局、あなたの引用した文章でも行列の理論から導いてる

うむ、良い指摘です。100点満点の5点をあげよう(^^

さて、纏めておこう
1.( >>236より)零因子は、主に環の中に存在し、基本的に 群の中には存在しない(零がない)
2.可換環では、「(可換)体は割り算が自由にできることから整域となる(つまり零因子を持たない)」
3.( >>237より)非可換環では、ちょっと事情が違う
 「非可換環の構造や振る舞いは可換環ほど解明されていない」(下記)
4.「ウェダーバーンの小定理によって、すべての有限可除環は可換でありしたがって有限体である」
5.従って、例外的に(無限)斜体(無限可除環)の場合では、零因子が含まれる可能性がある
6.但し、行列群では、非可換でも「体 F 上の n 次正方行列環 M(n, F) における単元は正則行列である」
 (証明は、 >>173などご参照(行列式|A|が0か否かで異なる))
7.なお、環の中では、左零因子a(ax=0 で、a≠0 かつ x≠0 )に対し、左逆元 a^(-1)a=1(単位元)の存在は両立しない
 (∵ ax=0の両辺に、a^(-1)を作用させると、左辺は a^(-1)ax=x で、右辺は a^(-1)0=0。これは、x≠0に矛盾(なお、結合則を使った)。これから、可換の場合には、零因子と逆元の存在は、存在しないことが、すぐ分かる。
 なお、「体 K に成分を持つ正方行列 M が可逆であるのはその行列式が 0 以外であるときであり、かつそのときに限る」(下記 逆元 wikipediaより)ので、正方行列 Mは、行列式が 0 以外のとき零因子を持たないし、零因子になれない!! )
8.また、5の場合において、例えば群Gに含まれる元Aに対して、(右又は左)零因子Bが存在して、(例えば右として)AB=0(零元)となるとき
 Bは、Gに含まれてはならない(∵ AB=0で0∈Gとなると、0には逆元が存在しないので群の定義に矛盾。左因子も同じ)(>>149や下記など)
 冪零元(下記)も、同様の理由で含まれてはならない

 つまり、環の中では、零因子と逆元の存在は、密接に関連しているのです!!!
 なお、上記5項辺りは、論文ネタかもしれないね(再録「非可換環の構造や振る舞いは可換環ほど解明されていない」(下記))(^^;

つづく


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch