20/08/08 12:18:12 wEGnwISi.net
(補足)
群は、何も言わなければ、基本的には非可換で
可換群は、”アーベル”と言われる場合が多い
体は、可換体を単に体ということも多いという
非可換な演算を含む場合、斜体。非可換な積を持つ体を非可換体という
URLリンク(ja.wikipedia.org)
アーベル群
URLリンク(ja.wikipedia.org)(%E6%95%B0%E5%AD%A6)
体 (数学)
日本語の語法として、体の定義においてはその積が可換か非可換かについて必ずしも注視しないが、積が可換かそうでないかで目的意識や手法は大きく異なる。前者については可換体の項を(初学者にはこちらが取りつきやすいであろう)、後者については斜体(これは「必ずしも可換ではない」体の意味で用いられる)の項を参照されたい。
URLリンク(ja.wikipedia.org)
可換体
抽象代数学において、可換体(かかんたい、仏: corps commutatif)あるいは単に体(たい、英: field)[注 1]とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。
URLリンク(ja.wikipedia.org)(%E6%95%B0%E5%AD%A6)
斜体 (数学)
斜体(しゃたい、英: skew field; 歪体, 独: Schiefkorper, 仏: corps, corps gauche)は加減乗除が可能な代数系である[1][注 1]。除法の可能な環であるという意味で可除環(かじょかん、division ring, Divisionsring)ともいう[3]。係数環を持ち、多元環の構造を持つことを強調する場合は、特に多元体[4](たげんたい、division algebra, algebre a division; 可除多元環)と呼称することも多い[注 2]。非可換な積を持つ体を非可換体(ひかかんたい、non-commutative field, corps non commutatif)という[2]。