現代数学の系譜 カントル 超限集合論他 3at MATH
現代数学の系譜 カントル 超限集合論他 3 - 暇つぶし2ch554:132人目の素数さん
21/11/24 06:34:33.57 V7507mjy.net
>>499-502
中卒SET A君は
「ボクのむげんしんぐるとんは無敵なんだぁぁぁぁ!」
とわめく3歳児なんで何をいっても無駄かと
>だれも無限も"…"表記も否定していない。
 そうだね でも彼にはそうは聞こえないw
>否定してるのは無限重シングルトンが集合であるというトンデモ論。
 そうだね でも彼にとっては「無限重シングルトン」が全てだから
 それを否定されたら彼の全人格が否定されたことになるので
 うけいれられない 要するに中卒SET Aは💨違いってことw
SET A君は・・・{{{}0}1}2・・・と{}0,{{}0}1,{{{}0}1}2,…の違いが
分かってないのよ、
無限個の元{}0,{{}0}1,{{{}0}1}2,…を
一個の・・・{{{}0}1}2・・・にまとめられない
ってことがね
そんなことができるとしたら
最大元のない列から、最大元を取り出せちゃう
それが矛盾だって気づかないところが
論理のわからぬ中卒なんだな SET Aは
箱入り無数目の「決定番号∞」も実は同じ過ちなんだね
自然数の中に存在しない「最大元」∞を
勝手に脳内ででっち上げちゃう
要するに
「自然数の有限集合では最大元が存在するから
 自然数の無限集合でも同様の性質が成り立つ
 それがコンパクト化ぁぁぁぁぁ!!!」
と間違ったコンパクト性の理解をしてるんだな

555:132人目の素数さん
21/11/24 10:31:17.19 HJUvJshW.net
>>503
> おまえ、その比喩大好きだなw
>それしか、持ちネタないの?
数学的価値皆無な比喩ですけどねw

556:132人目の素数さん
21/11/24 11:24:41.36 oWCw2TF7.net
>>503
>ここでは数列の項の添数は自然数に限定
>つまり数Sの数列はN→Sという写像
よくわからんけど「0,1,2,…,7 なる数列」だったらどうなるん?
それも存在しないん?

557:132人目の素数さん
21/11/24 20:01:10.23 cmFafFDr.net
>>503
遂に安達の爺様に続いてSetAまで0.999…999ではなく0.999…を有限小数と言い始めよったたのう、
やはり「迸る俺流」一員じゃな。
(安達+高木)/2≒SetA

558:132人目の素数さん
21/11/25 19:59:30.94 sLIgcZfQ.net
SET Aの(似非)数学的帰納法による0.999…<1の(似非)証明
「有限小数で
0.9<1
0.99<1
0.999<1
・・・
だから無限小数でも
0.999…<1!」

559:132人目の素数さん
21/11/29 02:31:04.44 RvVkAwPJ.net
>>490
そうですね。
実数Rの真部分集合(0,1)の任意の元を自然数で附番できたと仮定する。
第n元は二進小数で0.(xn1)(xn2)(xn3)…、xni∈{0,1} と表せる。
xni'≠xniと定義したとき、
(0,1)の元0.(x11')(x22')(x33')… は附番されたどの元とも異なる。
なぜなら、小数第1位が第1元と異なり、小数第2位が第2元と異なり、小数第3位が第3元と異なり、・・・。
これは仮定と矛盾するから仮定は偽。
よって(0,1)のどの元も含むような数列 s:N→(0,1) は存在しない。
対角線論法と数列の定義を知ってれば造作もない証明。
「整列集合の任意の元からなる数列が存在する」なんて言ってる人に単位出すのはインチキ大学でしょう。

560:132人目の素数さん
21/12/02 16:03:06.78 N8d/th7+.net
これいいね
URLリンク(www.jstage.jst.go.jp)
J-STAGEトップ/総合講演・企画特別講演アブストラクト/2008 巻 (2008) Autumn-Meeting1 号/書誌 p. 70-79
PDF
URLリンク(www.jstage.jst.go.jp)
モデル理論とその周辺 坪井明人(筑波大学数理物質科学研究科)

561:132人目の素数さん
21/12/04 04:25:19.45 qhA6cGXM.net
なんもわかってないおサルさんが
いいね いいね 夜空にパーリナイッ!w
URLリンク(www.youtube.com)

562:132人目の素数さん
21/12/04 11:13:13.23 2fTR6PCi.net
なんも分かってないっつーても限度があるやろ
対偶も分からんって中卒かい

563:132人目の素数さん
21/12/05 00:39:05.12 MqQ62sSb.net
>>509
そんな奴だからSetAは無限重シングルトン解釈トンデモ妄想

564:132人目の素数さん
21/12/05 00:45:25.91 MqQ62sSb.net
>>509
そんな奴だからSetAは無限重シングルトン解釈トンデモ妄想。
有限と無限の分別も付けないSetAは自らの似非帰納法�


565:ェ 「1は有限値 2は有限値 3は有限値 … だから ∞も有限値!」 と言ってるのと同じである事に気付いてない。 そんな奴だから0.999…を有限小数として扱うわけ(SetA前歴実話)だ。



566:132人目の素数さん
21/12/05 07:13:54.61 MqQ62sSb.net
嘘を平然と語る人達
・SetA
・『学問』『バカボンパパ』
・高木ゲェジ

567:132人目の素数さん
21/12/05 09:10:16.37 SVbdAHZX.net
ま~た、中卒🐎🦌が性懲りもなく可算多重一元🐷とかいいだしたよw
スレリンク(math板:730番)
>有限多重シングルトンに上限はない。
>だから、一階の理論では、可算多重シングルトンの存在は否定できない
>(レーヴェンハイム・スコーレムの定理より、存在しても矛盾はしない)
レーヴェンハイム・スコーレムの定理は
超準有限シングルトンの存在を認めるだけであって
可算多重シングルトンの存在を認めるものではないよ
超準自然数と可算順序数ωの違い、わかる?
算術の超準モデル
URLリンク(ja.wikipedia.org)

568:132人目の素数さん
21/12/05 17:00:06.46 SVbdAHZX.net
スレリンク(math板:762番)
>石器時代は数が3つ以上は数えられなかったらしいが
>そういう人には、レーヴェンハイム-スコーレムは、難しいよな
 レーヴェンハイム-スコーレムを誤解したのは中卒君 君だよキミ
 レーヴェンハイム・スコーレムの定理では超準自然数の存在が言えるだけ
 0以外のいかなる超準自然数もその前者が存在する
 自然数だからね、当然のことだよ
 いっぽう、最初の極限順序数であるωには前者が存在しない
 つまり、ωはいかなる超準自然数とも異なる
 残念だったね 中卒君

569:132人目の素数さん
21/12/05 19:33:51.03 iG+iWKsx.net
自然数と順序数の違いが分からない発達障害

570:132人目の素数さん
21/12/05 19:41:55.17 5//m+7qe.net
発達障害はむしろ同一性には強いと聞いたが

571:132人目の素数さん
21/12/06 15:53:26.03 8V/KioOF.net
発達障害にも種類が有る
同一性を過信する障害とか

572:132人目の素数さん
21/12/06 21:44:22.69 F9/0bwj3.net
何の学術的裏付けも無さそうなレスありがとうございます
反知性主義さん
もっとお勉強しましょうね

573:132人目の素数さん
21/12/07 08:36:07.37 Z1Ij38kG.net
>>517
>レーヴェンハイム・スコーレムの定理は
>超準有限シングルトンの存在を認めるだけであって
違うんじゃね
独自説だろ

574:132人目の素数さん
21/12/07 09:32:59.48 cltX9XJ0.net
独自説はセタの「有限で成り立つことは無限でも成り立つ」だよ
安達爺は無限を受け入れられない
セタは無限を理解出来ない

575:132人目の素数さん
21/12/07 10:54:02.03 5ZVJfYJQ.net
>>524
レーヴェンハイム-スコーレムが分かってないじゃんw
URLリンク(ja.wikipedia.org)
レーヴェンハイム-スコーレムの定理(英: Lowenheim-Skolem theorem)とは、可算な一階の理論が無限モデルを持つとき、全ての無限濃度 κ について大きさ κ のモデルを持つ、という数理論理学の定理である。そこから、一階の理論はその無限モデルの濃度を制御できない、そして無限モデルを持つ一階の理論は同型の違いを除いてちょうど1つのモデルを持つようなことはない、という結論が得られる。
定理の上方部分の証明は、いくらでも大きな有限のモデルを持つ理論は無限のモデルを持たねばならないことをも示す。
例と帰結
自然数を N、実数を R とする。この定理によれば、(N, +, ×, 0, 1) の理論(真の一階算術の理論)には非可算なモデルがあり、(R, +, ×, 0, 1) の理論(実閉体の理論)には可算なモデルがある。もちろん同型の違いを除いて、(N, +, ×, 0, 1) と (R, +, ×, 0, 1) を特徴付ける公理化が存在する。レーヴェンハイム-スコーレムの定理は、それらの公理化が一階ではあり得ないことを示している。例えば、線型順序の完備性は実数が完備な順序体であることを特徴付けるのに使われるが、その線型順序の完備性は一階の性質ではない。
URLリンク(fujicategory.hatenadiary.org)
数学基礎論の勉強ノート
fujicategory
2011-07-21
レーヴェンハイム・スコーレムの定理!!
公理系Tが無限モデルを持てば、可算モデルも不可算モデルも持ちますよ!それどころかどんな大きな濃度のモデルも持ちますよ!っていう定理です。ちょっとテンションが上がってきますねー(∩´∀`)∩
まずは定理の引用から。(新井敏康「数学基礎論」より)
定理5.1.7(上方(Upward)Lowenheim-Skolem 定理)
1.言語Lでの公理系Tがどんなにも大きい有限モデルをもてば あるいは無限モデルをもてば
  (つまり∀ n ∃ M [M |= T\& card (|M|) >= n ] ,
  どんな無限基数κ>=card(L)についても
  TのモデルNで濃度κのものが存在する.

576:132人目の素数さん
21/12/07 12:03:15.96 cltX9XJ0.net
>>525
> レーヴェンハイム-スコーレムが分かってないじゃんw
おまえがな。
どんな定理を適用しようがωの前者は存在しない。存在したら極限順序数の定義に反する。
バカに数学は無理なので諦めて下さい。

577:132人目の素数さん
21/12/07 17:53:17.87 bLWddiKp.net
鬼の首とったりばりに喜び勇んで「分かってないじゃんw」と言って併記したコピペ内容を
誰よりも理解してないコピペ専門非学一徹永久無学主義者SetA

578:132人目の素数さん
21/12/07 19:39:37.52 NlBzaa6N.net
>>525 >レーヴェンハイム-スコーレムが分かってないじゃんw
>>526 >おまえがな。
んだな
例えば最初の無限順序数ωより大きい超準自然数が存在する、なんて証明できない
超準自然数が存在する超準モデルにおける超準ωは 
その超準モデルにおけるいかなる超準自然数よりも大きい
やっぱS ETAはレーヴェンハイム・スコーレムが全然理解できない白痴だったな

579:132人目の素数さん
21/12/08 13:54:00.74 tPmP8J4x.net
落ちこぼれは、悲しいね
下記を100回音読したらどうだ?
URLリンク(ja.wikipedia.org)
順序数
順序数の並び方を次のように図示することができる:
0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω))), ............, ω + ω, S(ω + ω), S(S(ω + ω)), S(S(S(ω + ω))), ..............................
まず、0 が最小の順序数である。その後に S(0) = 1, S(S(0)) = 2, S(S(S(0))) = 3, ... と有限順序数(自然数)が通常の順序で並んでいる。そして、すべての自然数が並び終えると、次に来るのが最小の超限順序数 ω である。ω の後にはまたその後続者たちが S(ω), S(S(ω)), S(S(S(ω))), ... と無限に続いていく。その後、それらの最小上界(後に ω + ω と呼ばれる)が並び、その後続者たちが無限に続く。だがそれで終わりではない。無限に続いた後には、必ずそれまでに並んだすべての順序数たちの最小上界が存在し、その後続者、そのまた後続者、... のように順序数の列は"永遠に"続いていくのである。
つづく

580:132人目の素数さん
21/12/08 13:54:17.95 tPmP8J4x.net
>>529
つづき
URLリンク(ja.wikipedia.org)
最小の非可算順序数(英: First uncountable ordinal)ω1の存在は、選択公理によらずに示すことができる(ハルトークス数を参照)。ω1は極限順序数で、すべての可算な順序数を含む非可算集合である。ときに Ω とも表記される。その濃度は最小の非可算基数 アレフ1 に等しい。
URLリンク(ja.wikipedia.org)
到達不能基数
著者によっては非可算性を要求しないこともある(その場合アレフ0 は強到達不能基数)。弱到達不能基数は Hausdorff (1908)、強到達不能基数は Sierpi?ski & Tarski (1930) および Zermelo (1930) によって導入された。
選択公理を仮定すると、他の全ての無限基数は正則かまたは(弱)極限である。しかしながら、その両方になれるもの、即ち弱到達不能基数は中でも大きいものに限られる。
順序数が弱到達不能基数であるための必要十分条件は、それが正則順序数であり、かつ、正則順序数の列の極限であることである(0,1, アレフ0 は正則順序数だが正則順序数の列の極限ではない)。強極限かつ弱到達不能な基数は強到達不能である。
強到達不能基数の存在は、グロタンディーク宇宙が存在するという形で仮定される場合がある。この両者の間には深い繋がりがある。
(引用終り)
以上

581:132人目の素数さん
21/12/08 15:49:46.91 umaeoeyg.net
>>529
どこにも「有限で成り立つことは無限でも成り立つ」なんて書かれてないけど
日本語も読めない落ちこぼれ?

582:132人目の素数さん
21/12/08 20:33:04.32 p4epif7+.net
>>529-530
レーヴェンハイム・スコーレム関係なくなったな
やっぱり全然理解できない白痴だったな S ETAは

583:132人目の素数さん
21/12/10 15:00:58.98 I0HYOg9d.net
スレリンク(math板:71番)
>無限シングルトンの定義:有限シングルトンの無限極限
>つまり、
> n重シングルトン: Sn:={・・{}・・}
>無限重シングルトン: S∞:= lim n→∞ Sn
>この定義は、自然数が構成される前には、できない
>しかし、自然数が構成された後には、可能
>この極限の存在は、レーベンハイムスコーレムで保証される
URLリンク(ja.wikipedia.org)
全然ダメw
そもそもレーベンハイム・スコーレムで云えるのは
超準自然数の存在であって、無限順序数の存在ではない
超準自然数が標準自然数より大きいのは確かだが
超準自然数を集合論の標準モデルにおけるωと直接比較するなんてことはできない
なぜなら標準モデルのω、すなわちいかなる標準自然数より大きい最小の数
は超準自然数としては実現し得ない
なぜならいかなる超準自然数も直前の超準自然数が存在するから最小たりえない
(なお、標準/超準の区別は自然数論の中ではできないので
 超準自然数重シングルトンが基礎の公理に反するとは証明できない)
そういう意味では
無限重シングルトン: S∞:= lim n→∞ Sn を
任意の標準自然数nに対するSnを図形として包含する最小の図形
として定義する限り、レーベンハイム・スコーレムでは正当化できない
まったく見当違いでトンチンカンなド素人の初歩的誤りw

584:132人目の素数さん
21/12/10 20:28:41.03 KrlnKBcR.net
あれ?あれあれ?あれれ~?あっるるるぇ~?シングルトンの集合としての定義“そのもの”の話が
『数としての定義へのシフトとその経緯』の話でも“なし”に“勝手に”数としての定義に摺り変わってるぞ~!
何だこの自殺行為は?SetAは自分の自我の崩壊を見せ付ける事で自分を育てた親の人生の否定でもしてやりたいのか?
何なんだこの、深淵かつ不毛かつ徒労な、全き無駄は?この世に全く要らねぇじゃん、全き負の遺産でしかないじゃん!
SetAを生かす理由:専ら人類尊厳最優先尊重型自由資本民主制主義下人権堅守の為だけ
SetA特筆的固有に生かす理由:無し
おい、SetAを生かす理由が人権以外に何もねぇぞ
ロードローラーで圧し砕いてトイレに流しちまった方が世の為・人の為だなこりゃ

585:132人目の素数さん
21/12/23 07:22:47.56 ypzkaLik.net
メモ
URLリンク(encyclopediaofmath.org)
Ordinal number
transfinite number, ordinal
The order type of a well-ordered set. This notion was introduced by G. Cantor in 1883 (see [2]). For instance, the ordinal number of the set N of all po


586:sitive integers, ordered by the relation ≦, is ω.



587:132人目の素数さん
21/12/23 08:04:29.49 ypzkaLik.net
メモ
URLリンク(www.math.mi.i.nagoya-u.ac.jp)
集中講義「マーティン予想」?†
木原 貴行
名古屋大学 情報学部・情報学研究科
最終更新日: 2018 年 12 月 29 日
? 本講義ノートは,2018 年度秋期開講の東北大学大学院理学研究科数学専攻における「力学系理論特選」,「応用数理
特論 A」及び「応用数理 特殊講義 GII」の集中講義「マーティン予想」の内容をまとめたものである.
† 講義のページ: URLリンク(www.math.mi.i.nagoya-u.ac.jp)

588:132人目の素数さん
21/12/30 09:03:33.91 .net
300132人目の素数さん 2021/12/16(木) 11:16:02.46 ID:rOPOlAUb
スレリンク(math板:300番)
誤り1
>さてノイマン構成で、ωn={0,1,…}が出来たとき、
>0,1,…の中に、無限のネスト深さの元が存在します
正解1
ノイマン構成で、ωn={0,1,…}が出来たとき、
0,1,…は全て、有限のネスト深さの元です
(つまり、無限のネスト深さの元は存在しません)
誤り2
>(証明:背理法による。
> 有限のネスト深さの元しかなければ、ωnは有限集合であるから、
> ωnが無限集合であることに矛盾する)
正解2
有限のネスト深さの元は無限にあるので、ωnは無限集合です
つまり、矛盾しません
誤り3
>同様に、ペアノ公理で、
>ツェルメロの後者関数 suc(a) := {a} を使って、
>無限集合たる自然数を構成すると、
>その中に無限のネスト深さの元が存在します.
>つまり、ペアノ公理を認めるならば、
>同様に無限集合たる自然数を構成できて、
>その中に無限のネスト深さの元が存在する
正解3
ペアノ公理を使って自然数の全体という
無限集合が構成できますが、
その中に「無限自然数」は存在しません
したがって
>ネスト深さnの極限として、aωが構成でき
> lim n→ω an
>=aω=ω{・・n{n-1{・・1{0{}01}1・・}n-1}n・・}ω
>=ω{・・n{n-1{・・1{Φ}1・・}n-1}n・・}ω
>です。
は誤りであり嘘であり妄想です
ここまでよくないなら、残念ながら数学は無理ですね

589:132人目の素数さん
21/12/31 07:46:55.42 7xI8oln4.net
>ネスト深さnの極限として、aωが構成でき
> lim n→ω an
>=aω=ω{・・n{n-1{・・1{0{}01}1・・}n-1}n・・}ω
>=ω{・・n{n-1{・・1{Φ}1・・}n-1}n・・}ω
>です。
この発言のオカシイところ
1.lim n→ω anの定義が示されていない。
2.aω=ω{・・n{n-1{・・1{0{}0}1・・}n-1}n・・}ωの定義が示されていない。
  例えばω{の右隣りのカッコが有るのか無いのかすら示されていない。
3.lim n→ω anとaωが等しい理由が示されていない。
まったく数学の体を為していない。100点満点で0点。

590:132人目の素数さん
22/01/01 15:33:20.65 lBjAMPml.net
メモ
URLリンク(ja.wikipedia.org)
遺伝的有限集合(いでんてきゆうげんしゅうごう、英: hereditarily finite set)は有限個の遺伝的有限集合からなる有限集合と定義される。この定義は帰納的である。遺伝的という名称は遺伝的有限という性質がその元に遺伝することによる。
URLリンク(en.wikipedia.org)
Hereditarily finite set
In mathematics and set theory, hereditarily finite sets are defined as finite sets whose elements are all hereditarily finite sets. In other words, the set itself is finite, and all of its elements are finite sets, recursively all the way down to the empty set.
Representation
This class of sets is naturally ranked by the number of bracket pairs necessary to represent the sets:
・{} (i.e. Φ , the Neumann ordinal "0"),
・{{}} (i.e. {Φ } or {0}, the Neumann ordinal "1"),
・{{{}}},
・{{{{}}}} and then also {{},{{}}} (i.e. {0,1}, the Neumann ordinal "2"),
・{{{{{}}}}}, {{{},{{}}}} as well as {{},{{{


591:}}}}, ・... sets represented with 6}6 bracket pairs, e.g. {{{{{{}}}}}}, ・... sets represented with 7}7 bracket pairs, e.g. {{{{{{{}}}}}}}, ・... sets represented with 8}8 bracket pairs, e.g. {{{{{{{{}}}}}}}} or {{},{{}},{{},{{}}}} (i.e. {0,1,2}, the Neumann ordinal "3") ・... etc. In this way, the number of sets with n bracket pairs is[1] 1,1,1,2,3,6,12,25,52,113,247,548,1226,2770,6299,14426,・・・ Axiomatizations Theories of finite sets ZF See also Hereditary set Hereditarily countable set Hereditary property Rooted trees Constructive set theory Finite set



592:132人目の素数さん
22/01/01 17:56:10.16 .net
いわずもがなですが
遺伝的有限集合全体の集まり
は無限集合ですよ

593:132人目の素数さん
22/01/02 14:48:33.11 c+Wvs6m3.net
>>539
無限重シングルトンのコピペ未だですか?
コピペは得意なんですよね?

594:132人目の素数さん
22/01/28 14:34:30.29 OCJDS5eR.net
転載しておく
Inter-universal geometry と ABC予想 (応援スレ) 64
スレリンク(math板:594番)
594 名前:132人目の素数さん[sage] 投稿日:2022/01/28(金) 07:44:33.71 ID:341TuiYA
>>7 追加
> ”(スレ55 スレリンク(math板:158番)より)
> <上昇列 0<・・・<ω が有限列にしかなり得ない
> ことも分からん「考えなしの素人」に数学はムリ”
反例が見つかった(下記)w
下記のOrdinal arithmetic
・Addition で、... < 0'
・Multiplicationで、... < 01
・Exponentiationで、... < (0,1)
www
URLリンク(en.wikipedia.org)
Ordinal arithmetic
Addition
The first transfinite ordinal is ω, the set of all natural numbers. For example, the ordinal ω + ω is obtained by two copies of the natural numbers ordered in the usual fashion and the second copy completely to the right of the first. Writing 0' < 1' < 2' < ... for the second copy, ω + ω looks like
0 < 1 < 2 < 3 < ... < 0' < 1' < 2' < ...
This is different from ω because in ω only 0 does not have a direct predecessor while in ω + ω the two elements 0 and 0' do not have direct predecessors.
Multiplication
Here is ω・2:
00 < 10 < 20 < 30 < ... < 01 < 11 < 21 < 31 < ...,
which has the same order type as ω + ω.
Exponentiation
For instance, ω^2 = ω・ω using the operation of ordinal multiplication. Note that ω・ω can be defined using the set of functions from 2 = {0,1} to ω = {0,1,2,...}, ordered lexicographically with the least significant position first:
(0,0) < (1,0) < (2,0) < (3,0) < ... < (0,1) < (1,1) < (2,1) < (3,1) < ... < (0,2) < (1,2) < (2,2) < ...
Here for brevity, we have replaced the function {(0,k), (1,m)} by the ordered pair (k, m).
(引用終り)
以上

595:132人目の素数さん
22/01/28 15:48:54.96 .net
>>542
転載な
Inter-universal geometry と ABC予想 (応援スレ) 64
スレリンク(math板:596番)
596132人目の素数さん2022/01/28(金) 10:20:39.06ID:XHv+DeMU
594
>This is different from ω because in ω only 0 does not have a direct predecessor while in ω + ω the two elements 0 and 0' do not have direct predecessors.
しっかり書いてありますね 。0'の前者は無いと。英語読めますか?
つまり
>0 < 1 < 2 < 3 < ... < 0' < 1' < 2' < ...
なる表記は<列ではないと。
<列ならば二項関係<の定義に従い < 0' の左隣が存在する必要がありますから。
コピペバカには理解不能かな?

596:132人目の素数さん
22/01/28 20:08:58.84 XHv+DeMU.net
転載までしてバカアピールですか?
ご苦労様です

597:132人目の素数さん
22/01/29 11:28:19.11 2PdAu/y1.net
メモ
「郡司のもつ


598:ペギオ(Pegio)というペンネーム中のミドルネームは、本当は自分の子供につけるはずの名前だったが、妻に反対されたため自分のペンネームに使っている。 ただ単にペンギンが好きだからという説もある...」 http://webcatplus.nii.ac.jp/webcatplus/details/creator/573756.html Webcat Plus 郡司 ペギオ幸夫 (1959-) 郡司 幸夫(ぐんじ ゆきお、ペンネームは郡司 ペギオ 幸夫(英 Yukio-Pegio Gunji)、1959年 - )は日本の理学者。 現在、早稲田大学理工学術院基幹理工学部・研究科教授。 「”生命と物質の違いは何か”とは如何なる問いか。 そして、我々はその問いに対して、如何なる答え方を用意すべきか」という 問題に取り組んでいる。 この問題に取り組む過程で内部観測と呼ばれる理論を発展させた。 郡司のもつペギオ(Pegio)というペンネーム中のミドルネームは、本当は自分の子供につけるはずの名前だったが、妻に反対されたため自分のペンネームに使っている。 ただ単にペンギンが好きだからという説もある... 「Wikipedia」より



599:132人目の素数さん
22/02/19 07:59:03.74 USplO5Y7.net
URLリンク(www.iwanami.co.jp)
岩波科学ライブラリー
深層学習の原理に迫る
数学の挑戦
著者 今泉 允聡 著
刊行日 2021/04/16
深層学習はなぜうまくいくのか? その原理を数学的に解明するという難題に、気鋭の研究者が挑む。
深層学習の原理に迫る
試し読み URLリンク(www.iwanami.co.jp)
上記「試し読み」の”まえがき”中に、次の一文がある
「なお数学的な理論で物事が表現できることと、人間の理解に繋がることは同一ではなく
そこには大きなギャップがある。このギャップを埋めること、
すなわち数学的成果を直観的に読者に伝えることは、本書が大事にしている原則の一つである。」
至言である
(参考:上記著書の元になった講演)
URLリンク(drive.google.com)
東京大学 今泉允聡
ISM75周年
講演スライド
オープンハウス2019スライド
深層学習の原理を明らかにするこころみ

600:132人目の素数さん
22/03/05 09:21:19.28 hhayz5nm.net
これ、いいね
URLリンク(mathematics-pdf.com)
数学 PDF よしいず
コラム > ゲーデルの不完全性定理について
ゲーデルはω-無矛盾という仮定のもとで第一不完全性定理を証明しました.
 ゲーデルの第二不完全性定理とは, 「自然数論の公理を含む無矛盾な形式的体系の無矛盾性は,その体系内では証明できない」というものです.
 これは,自然数論の公理を含む数学の理論が, 少なくとも有限の立場では自分自身の正しさを示すことは不可能であることを意味します.
 証明における主なステップは,次の通りです.
数学を形式的に表現することに関して,「各自然数ごとに表現可能」という概念を導入する.
「原始帰納的」と呼ばれる関数が各自然数ごとに表現可能であるという,「表現定理」を証明する.
数学の証明の一部を「ゲーデル数」と呼ばれる数に対応させることで証明をある意味で計算できるようにする.
カントールの対角線論法のアイデアを用いて,「対角化定理」と呼ばれる,論理式における不動点定理のようなものを証明する.
決定不可能な論理式,つまり自分自身もその否定も体系内では証明できないような論理式 U を構成する.(第一不完全性定理)
「体系は無矛盾である�


601:vという命題を体系内の論理式として表現する. その論理式を C とおく. 「 C が体系内で証明できるならば U も体系内で証明できる」ということを証明する. このとき,U は体系内では証明できない論理式だから,C もまた体系内では証明できない論理式である. (第二不完全性定理)  上の証明のステップ6において, 「形式的体系が無矛盾である」という命題を表現する論理式の選び方は一通りではありません.  クライゼルは,無矛盾性を表現する論理式で, ゲーデルが不完全性定理の証明で用いた論理式とは別のものをとると, それが自然数論の公理を含む形式的体系のなかで証明できる場合があることを注意しました.  これは,数学の命題を形式的に表現する絶対的な方法が確定しているわけではないことを示唆しています. 関連書籍 前原昭二(著): 数学基礎論入門,朝倉書店,1977 広瀬健/横田一正(著): ゲーデルの世界,海鳴社,1985 日本数学会(編): 岩波数学辞典第3版 184 数学基礎論,岩波書店,1985



602:132人目の素数さん
22/12/20 15:59:00.03 R0GrT6qP.net
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)

603:過去ログ ★
[過去ログ]
■ このスレッドは過去ログ倉庫に格納されています


最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch