21/11/20 10:31:02.07 wjyKxUal.net
Neumannの順序数で「自分より小さい全ての順序数の集合」とするところを
Zermeloの順序数で「自分より小さい順序数の最大元」としている
(シングルトンという見た目だけにこだわるのは幼稚な三歳児だけ)
「自分より小さい順序数の最大元」が存在しない場合には
それに代わる方法をとるしかない 要は、
「自分より小さい順序数の集合で、
自分より小さいいかなる順序数xも、
その中に必ずある要素y(x)が存在し
y(x)>xとなるようにできるもの」
であればいい
注)y(x)と書いたのは、
xに依存せず決まる定数ではなく
xに依存して決まる関数であるから