現代数学の系譜 カントル 超限集合論他 3at MATH
現代数学の系譜 カントル 超限集合論他 3 - 暇つぶし2ch429: ということだから xが極限順序数だったら、xより小さい順序数の最大元はないから 上記の最大元だけを要素として持つシングルトンとしては表せない xが極限順序数の場合 1.xより小さい元のみを要素として持つ 2.要素内の最大元は存在しない 3.さらにxより小さく、要素内のいかなる元よりも大きい元も存在しない を満たすようにするしかないので、必然的に無限集合となる 注)最小の無限順序数ωの場合1.と2.のみ満たせば3.を満たすが   最小の非可算順序数ω1の場合は1.と2.だけ満たしても   可算無限集合だと3.を満たさないので 3.も必要




次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch