21/11/13 12:39:12.73 OtqEOAj/.net
>>322 補足
全順序列
0,1,・・,n,・・,ω
で、n→<n< に変えて
0,1,・・ <n< ・・,ω
としても、なんの問題もない
∵自然数Nは、全順序列だから
同様に、実数の数直線上のr∈Rで
------ r -------
ここで、r→<r< に変えて
------<r<-------
としても、なんの問題もない
∵実数Rは、全順序列だから
要するに、r∈Rを使って、
数直線を、1点r自身、r未満、r超え
の3つの部分に分けられるってことだ
”<r”に具体的な左の数は必要なく
”r<”に具体的な右の数は必要ない
数直線上には、1点rの左右の数は必要ない
よって、
0,1,・・ <n< ・・,ω
で、ω→<ω に変えて
0,1,・・ <n< ・・ <ω
としても,<ωは全ての自然数より大、言い換えれば、全ての自然数はω未満
と解釈すれば良い
それで
何の問題もない