20/07/26 04:05:28.64 6c6xEI4s.net
>>641
(2)が難しい
(a, b) = (3, 1) のときはファウルハーバーの公式より成り立つ。
もし n に関して恒等的に
S[a,n] = {S[b,n]}^2
が成り立つなら、 n = 2 でも成り立つので
S[a,2] = {S[b,2]}^2 すなわち
1 + 2^a = (1 + 2^b)^2
が成り立つ。ここで a = b + c と置くと、
2^(c-1) = 1 + 2^(b-1)
が成り立つことがわかる。よって c > 1 である。
このとき、 (b, c) を自然数の組に限定すると、左辺は偶数であるので b = 1 でなければならない。
ゆえに (b, c) = (1, 2) すなわち (a, b) = (3, 1) となるので(1)が成り立つ。
(2)も同様に示せないだろうか?
つまり、もしも方程式
2^(c-1) = 1 + 2^(b-1)
の正の有理数解が (b, c) = (1, 2) の他には存在しないならば、
(1)の条件を満たす正の有理数の組は (a, b) = (3, 1) に限られることがわかる。
例えば、上の方程式が成り立つなら log_{2}(2^(c-1) - 1) も有理数となるが、
そのような c は 2 以外に存在するだろうか?
682:132人目の素数さん
20/07/26 10:59:46.14 Iuk6VYmI.net
>>647
n=701が約534.8億
でした。。
>>649
関数でできましたっけ?
自宅のoffice365だと、ソルバー使えないんですね。。
n=900くらいまでの中間の計算が、ざっくり合っていれば参考になるので大変助かります
683:132人目の素数さん
20/07/26 11:23:08.07 Ej/zeZhe.net
>>644
さすが。
その式を n≧5 の項に使うと
Σ[n=1,∞] 1/n^(3/2) < 2.671003
でござるか。
また、その式のnを1/2だけ増加すると
2/√(n -1/2) - 2/√(n +1/2)
= 2[√(n +1/2) - √(n -1/2)] /√(nn -1/4)
= 2/{[√(n +1/2) + √(n -1/2)]√(nn -1/4)}
> 2/{[2√n]n} (*)
= 1/n^(3/2),
これを n≧5 の項に使うと
Σ[n=1,∞] 1/n^(3/2) < 2.613812・・・・
でござる。
なお ζ(3/2) = Σ[n=1,∞] 1/n^(3/2) = 2.61237535・・・・
*) y=√x は上に凸だから
4n - [√(n +1/2) + √(n -1/2)]^2
= 4n - [2n + 2√(n +1/2)・√(n -1/2)]
= 2n - 2√(n +1/2)・√(n -1/2)
> 0, (AM-GM)
684:132人目の素数さん
20/07/26 12:23:27.79 6c6xEI4s.net
ζ(s) が Re(s) > 1 で絶対収束することって常識じゃなかったのか
685:132人目の素数さん
20/07/26 12:37:05.97 ta/2Mj0h.net
>>654
常識を知らない相手に「これは常識やで」と返答をするのはナンセンスなので。
686:132人目の素数さん
20/07/26 12:42:05.29 6c6xEI4s.net
>>655
そうなんだけど、あまりにも有名だから個別の解法を考える必要があるのかなと思って
リーマンゼータ関数でググればすぐに出てくるし
解析学のテキストに載っていることも多いし
687:132人目の素数さん
20/07/26 12:52:22.00 6c6xEI4s.net
>>655
いや、ナンセンスとも限らないな
時には有名な既知の問題であることを教える必要もあるんじゃないか?
何でもかんでも自分の力で証明する必要はないよね
688:132人目の素数さん
20/07/26 13:13:45.61 6c6xEI4s.net
このスレは自力で頑張りすぎている回答が多い気がする
例えば>>621の回答は一見「導出」に見えるが、
実際はテイラー展開とガンマ関数の性質を既知としているからself-containedというわけではないし、
わざわざ二項級数の係数を一から計算する意義もわからない
>>620でヒントが与えられているように、二項級数 (1-1/t^2)^(r-1/2) の係数を
ガンマ関数を使って表すことができるとわかれば十分だと思われる
689:132人目の素数さん
20/07/26 16:21:06 XfzX3BHO.net
a≠0において定義され、a→0においてg(a)=f(a)/(1-a^2)は収束するがh(a)=f(a)/(1-a)は収束しないような実数値関数f(a)について考察する。
a=0の近傍でh(a)=(1+a)g(a)としてよく、
(1-|a|)|g(a)| < |h(a)| < (1+|a|)|g(a)|
a→0で左辺および右辺は収束するから、|h(a)|は収束する。
したがって考察すべき実数値関数は存在しない。
690:132人目の素数さん
20/07/26 16:21:32 XQi+qG/r.net
>>528
>>650
理論値は wine_full = π*(π² - 4) = 18.4399... となる。詳細は省略。
趣向を変えて モンテカルロ法 で乱数をぶん回してみた ( n=1000000 )
PARI/GPプログラムも省略。10行ちょっとくらいに収まった。
wine(Pi)
= 18.4238...
t = Pi/2 + acos(tan( 9.5126*Pi/180 )); wine(t)/wine(Pi)
= 0.4999...
t = Pi/2 + acos(tan( 11*Pi/180 )); wine(t)/wine(Pi)
= 0.4486...
11°は傾けすぎである。
n=1000000 には根拠がある。
box = (2*Pi)*(2*Pi)*2; #乱数を振る箱体積
a = wine_full; b = 0.5 * wine_full;
b/a*(sqrt((box-a)/a) + sqrt((box-b)/b) ) / sqrt(n)
= 0.00228...
体積比 b/a の揺れ幅を 少数点以下 2桁未満に抑えたかった。
効率は悪いが元の計算でポカミスしてないかの検算には使える。
691:イナ
20/07/26 18:48:31.48 y9+Xgjl+.net
前>>650
>>528
ワイングラス満杯はπ^4/3=32.4696970113……は接線の傾きや接点に誤差があっても関係ないからあってるはず。
692:132人目の素数さん
20/07/26 19:17:23.25 XCkK56Mw.net
nを整数とする。n < a < n + 1となるような整数aが存在しないことを示せ。
ただし、自然数の定義は、杉浦
693:解析入門1と同様に定義されているとする。
694:132人目の素数さん
20/07/26 19:57:00.35 XQi+qG/r.net
>>661
正しくは
V = π ∫[t=π/2→3π/2] (3π/2 - t)² (-cos(t)) dt
= ... = π ∫[t=0→π] t² sin(t) dt = ... = π (π² - 4)
っす。
(-cos(t)) のファクターは y=sin(t), δy = |dy/dt| δt に起因。
695:文部大巨人
20/07/26 20:39:49.80 SDpWYxlM.net
誰か >>590 にマジレス頼む。
現実に 九九 だけだと
明らかに足りないって中学・高校で気づくよな?
17^2 とか 25^2、 29^2
こんなの毎回計算していたら、時間の無駄だし。
696:文部大巨人
20/07/26 20:45:19.50 SDpWYxlM.net
整数 と その平方
21 … 441
22 … 484
23 … 529
24 … 576
25 … 625
26 … 676
27 … 729
28 … 784
29 … 841
ちなみに、21~29 はその性質上、
下2桁が同一の形の回文(625 を折返し地点として) になっているから
覚えやすいんだよな。
下2桁は {41,84,29,76} のみ。
697:132人目の素数さん
20/07/26 20:52:55.34 XCkK56Mw.net
>>662
解決しました。
698:132人目の素数さん
20/07/26 20:56:23.93 6c6xEI4s.net
>>662
整数の定義が「自然数およびそれに負号をつけたもの」なら、
自然数の全体 N と整数の全体 Z に対して
N = {n ∊ N | n ≧ 0} と Z - N = {-n | n ∊ N, n > 0} を示して
a > 0, a = 0, a < 0 で場合分けすれば
0 < k < 1 を満たす k ∊ N が存在しないことに帰着される
699:イナ
20/07/26 21:45:52.58 y9+Xgjl+.net
前>>661
>>663
y=sinxの積分関数が-cosxというのはわかる。
だからといって積分関数π(3π/2-t)^2に掛けていいという話を聞いたことがあっただろうか?
聞いたことあった気もする。けどあった気がするだけで、そんな話はないような気もする。
x=tのときの(t,sint)を左端とする水面の面積π(3π/2-t)^2をt=π/2から3π/2まで足し集めて、
ワイングラス満杯のワインの容積が出るんじゃないの?
1度目は計算間違いだった。
2度目のV=π^4/3は式が違うというのか?
π≦x≦2πの円柱に換算するとπ(π/2)^2×{1-(-1)}=π^3/2に比べてワイングラス満杯のワインの容積はだいぶ大きい。
π/2≦x≦πのx軸より上の部分を回転させるとかなりの容積になると思うんだよ。
18ぐらいなのか32ぐらいなのか。
700:132人目の素数さん
20/07/26 21:53:24.64 Zd39FNjK.net
>>660
正弦曲線ワイングラス満杯、
同様に数値積分で18.4399となりましたが、Wolfram先生が定積分の答を返してくれました。
integral_(-1)^1 π (π - cos^(-1)(x))^2 dx = π (π^2 - 4)?18.440
701:132人目の素数さん
20/07/26 21:59:35.55 Zd39FNjK.net
文字化けを訂正
integral_(-1)^1 π (π - cos^(-1)(x))^2 dx = π (π^2 - 4) ≒ 18.440
Rのコード
f<- function(x) -cos(x) # == sin(x-pi/2) == -cos(x)
A <- function(x)pi*(pi-acos(x))^2
integrate(A,-1,1)
> integrate(A,-1,1)$value
[1] 18.4399
702:132人目の素数さん
20/07/26 22:09:55.28 Zd39FNjK.net
>>668
URLリンク(i.imgur.com)
∫[-1,-1] pi*(pi-acos(h))^2 dh = 18.4399
この定積分はWolfram先生がπ(π^2-4)と教えてくれましたw
703:132人目の素数さん
20/07/26 22:14:56.54 XQi+qG/r.net
>>668 円盤の厚みは t 方向じゃなくて y 方向ですよ。
円盤面積: S(t) = π(3π/2-t)^2 {これはOK}
体積: V = lim Σ[i=1,N] δy S(t) = lim Σ δt (δy/δt) S(t)
= ∫ [t=π/2→3π/2] dt |dy/dt| S(t)
= ∫ [t=π/2→3π/2] dt (-cos(t)) S(t) {負符号が付くのは水面が下がる方向に積分してるから}
URLリンク(o.5ch.net)
704:イナ
20/07/26 22:2
705:5:37.11 ID:y9+Xgjl+.net
706:イナ103
20/07/26 22:57:32.40 y9+Xgjl+.net
前>>673
円盤の厚みがt方向ではなくy方向だからx=tに対するy=sintの積分関数-costを掛ける?
707:イナ
20/07/26 23:04:05.80 y9+Xgjl+.net
前>>674
>>663の計算途中の……がわからない。
708:132人目の素数さん
20/07/26 23:16:18.47 9pxGl80w.net
>>660
モンテカルロやってみました。
> wine <- function(x,z) -cos(sqrt(x^2+z^2))
> N=1e7
> x=runif(N,-pi,pi)
> y=runif(N,-1,1)
> z=runif(N,-pi,pi)
> (2*pi)*2*(2*pi) * mean(y >wine(x,z) & x^2+z^2<pi^2 )
[1] 18.44901
URLリンク(i.imgur.com)
709:132人目の素数さん
20/07/26 23:17:12.30 XQi+qG/r.net
だって全部書くと >>658 みたいなのに怒れらちゃうし。
710:132人目の素数さん
20/07/26 23:29:04.94 eho0OoN4.net
>>671
URLリンク(i.imgur.com)
積分範囲間違って書いたので訂正
∫[-1,1] pi*(pi-acos(h))^2 dh = 18.4399
この定積分はWolfram先生がπ(π^2-4)と教えてくれましたw
711:イナ
20/07/27 01:25:07.82 kHvfbJ83.net
前>>675ゆっくりでいい。飛ばさずに解こう。
V=∫[t=π/2→3π/2]π(3π/2-t)^2(-cost)dt
=π∫[t=π/2→3π/2]{(9π^2/4-3πt+t^2)(-cost)-(3π/2-t)^2sint}dt
(訂正中)
π(9π^2t/4-3πt^2/2+t^3/3)(t=π/2→3π/2)
=π(27π^3/8-27π^3/8+9π^3/8
-9π^3/8+3π^3/8-π^3/24)
=8π^4/24
=π^4/3
あってる。
712:132人目の素数さん
20/07/27 01:35:44.80 H/LImTqu.net
>>677
怒りんぼさんね>>658
713:132人目の素数さん
20/07/27 03:06:43.75 WQJm6Swf.net
n番目の素数をp[n]、a[n]=n/p[n]、b[n]=a[1]a[2]...a[n]とそれぞれ表す。
以下の極限の収束・発散を判定せよ。
(1)lim[n→∞] n!*b[n]
(2)lim[n→∞] n!*|sin(n)|*b[n]
714:132人目の素数さん
20/07/27 04:49:12.98 rzjYwbvr.net
なぜ普通に(n!)^2/(p[1]p[2]…p[n])と書かずに
わざわざn!を分離した定義にするのか謎
それと考えるならlimb[n]e^nとかの方が面白そう
715:132人目の素数さん
20/07/27 05:53:50.52 oiwvQQyF.net
>>528
満杯のとき水平面に平行な円を積分して答えが出せたけど
支柱と平行な方向に積分した答と合致しなかった。
鉛直方向の断面は正弦曲線でないってことかな?
716:132人目の素数さん
20/07/27 06:40:14.84 tXOcGr3H.net
>>683
3D描いたみたけど断面の曲線のイメージが沸かない。
URLリンク(i.imgur.com)
717:132人目の素数さん
20/07/27 06:46:43.33 b6+Oy9d9.net
三角形ABCの内部に点DをとりADとBC、BDとAC、CDとABの交点を各々E,F,Gとする。
このとき点Dをうまく選べば三角形EFGを任意の三角形に相似にすることが可能であるという命題は真か偽か?
真なら証明を、偽なら反例を挙げよ。
718:132人目の素数さん
20/07/27 07:01:31.31 tXOcGr3H.net
>>684(自己解決)
y軸の周りにy=-cos(x)を回転させたとしてz=z0での断面の曲線は y=-cos(√(x^2+z0^2)) 正弦曲線じゃないな。
z0=0のときは正弦曲線になるけど。
719:132人目の素数さん
20/07/27 10:30:22.64 0LgObjZ6.net
>>681
これは(1)の答えが0じゃないと(2)が意味ないけと(1)の答えは0じゃないやろ
素数定理知ってれば秒やけど素数定理知らなきゃ無理
720:132人目の素数さん
20/07/27 10:59:57.77 rzjYwbvr.net
超おおざっぱな計算だとb[n]~e^(-n)くらいだから(1)は思いっきり発散するはず
721:132人目の素数さん
20/07/27 11:06:29.34 0LgObjZ6.net
違うな(1)の答えが0でも(2)意味ない
何コレ?
722:132人目の素数さん
20/07/27 12:16:06 kGZt2RI9.net
>>681
(1) log(n!*b[n]) = Σ[k=1,n] log(k^2/p[k])
だが素数定理より lim_
723:[k→∞] klog(k)/p[k] = 1 だから lim_[n→∞] log(n^2/p[n]) = ∞ となるので発散する。 (2)も同様じゃね
724:132人目の素数さん
20/07/27 17:20:57.97 fq88ge5a.net
>>528
解析解は諦めてモンテカルロで概算をだしてみる。プログラムも全然楽だったY
WineGlass <- function(deg=0,N=1e7){ # deg degree tilted
wine <- function(x,z) -cos(sqrt(x^2+z^2)) # rotation of y=-cos(x) around y-axis
x=runif(N,-pi,pi)
y=runif(N,-1,1)
z=runif(N,-pi,pi)
θ=deg*pi/180
x0=pi-asin(tan(θ)) # x-cordinate of the edge of filled wine in tilled glass
y0=-cos(x0) # y-cordinate
(2*pi)*2*(2*pi)*mean(y >wine(x,z) & x^2+z^2<pi^2 & y<tan(θ)*(x-x0)+y0)
}
WineGlass=Vectorize(WineGlass,vectorize.args='deg')
y=WineGlass(0:20)
data.frame(deg=0:20,volume=y,ratio=y/y[1])
> data.frame(deg=0:20,volume=y,ratio=y/y[1])
deg volume ratio
1 0 18.43 1.000
2 1 17.01 0.923
3 2 15.78 0.856
4 3 14.67 0.796
5 4 13.67 0.742
6 5 12.73 0.691
7 6 11.87 0.644
8 7 11.04 0.599
9 8 10.29 0.559
10 9 9.58 0.520
11 10 8.90 0.483
12 11 8.25 0.448
13 12 7.66 0.416
14 13 7.09 0.385
15 14 6.55 0.355
16 15 6.04 0.328
17 16 5.58 0.303
18 17 5.11 0.278
19 18 4.69 0.255
20 19 4.28 0.232
21 20 3.92 0.213
9~10°傾ければいいみたい。
725:132人目の素数さん
20/07/27 17:40:18.60 fq88ge5a.net
もう少し範囲を狭めてモンテカルロしてみた。
> deg=c(0,seq(9.515,9.525,0.001))
> y=WineGlass(deg)
> data.frame(deg=deg,volume=y,ratio=y/y[1])
deg volume ratio
1 0.000 18.4490 1.00000
2 9.515 9.2042 0.49890
3 9.516 9.2195 0.49973
4 9.517 9.2113 0.49928
5 9.518 9.2153 0.49950
6 9.519 9.2295 0.50027
7 9.520 9.2098 0.49920
8 9.521 9.1954 0.49842
9 9.522 9.2095 0.49918
10 9.523 9.2022 0.49879
11 9.524 9.2089 0.49915
12 9.525 9.2151 0.49949
9.52°くらいだな。
726:132人目の素数さん
20/07/27 17:42:04.89 OWUhtjP7.net
>>691 追加条件 x < x0 が必要ですね
727:イナ
20/07/27 17:42:12.29 kHvfbJ83.net
前>>679
部分積分の式に当てはめると、
V=∫[t=π/2→3π/2]π(3π/2-t)^2(-cost)dt
=[π(3π/2-t)^2(-sint)](t=π/2→3π/2)-∫[t=π/2→3π/2](2t-3π)(-sint)dt
=π^3-ちょい違うか。
728:132人目の素数さん
20/07/27 18:33:36 fq88ge5a.net
>>693
レスありがとうございます。
ご丁寧にコードまでよんでいただいて助かりました。
確かにx<x0を追加しないと過大評価になります。
URLリンク(i.imgur.com)
729:132人目の素数さん
20/07/27 18:46:19.22 fq88ge5a.net
>>695
x<x0を追加して再実行
> deg=c(0,seq(9.516,9.518,0.0005))
> y=WineGlass(deg,N=1e8)
> data.frame(deg=deg,volume=y,ratio=y/y[1])
deg volume ratio
1 0.0000 18.4347 1.00000
2 9.5160 9.2149 0.49987
3 9.5165 9.2156 0.49991
4 9.5170 9.2219 0.50025
5 9.5175 9.2133 0.49978
6 9.5180 9.2134 0.49979
730:132人目の素数さん
20/07/27 20:16:05.97 0YH7t8Z3.net
確率変数XとYが独立なとき、X^2とYは独立だと思うのですが、示し方を教えて下さい。
731:132人目の素数さん
20/07/27 23:53:27 SP+AjLR3.net
独立の定義は書ける?
732: 【吉】
20/07/28 00:10:41 Hh0MCDmZ.net
前>>694
>>528
(-cost)を掛けて部分積分で解くでちょっと待っとって。
733:132人目の素数さん
20/07/28 00:52:08.92 vr2Os0se.net
xy平面の格子点を動く点Pがあり、Pは時刻0のとき原点Oにある。
Pがある時刻nに(i,j)にあるとき、時刻n+1には4点(i+1,j),(i-1,j),(i,j+1),(i,j-1)のいずれかにあり、4点のうちどの点にある確率も等しく1/4である。
時刻1,2,3,...にPが(k,0)にある確率の、各時刻についての総和(無限和)をP[(k,0)]とする。
比P[(2,0)]/P[(1,0)]と比P[(0,0)]/P[(1,0)]の大小を比較せよ。具体的な値を求める必要はない。
734:132人目の素数さん
20/07/28 01:03:01.48 fsv75dfM.net
>>700
それ再起的マルコフ連鎖やろP[(a,b)の和収束せぇへんやろ
735:132人目の素数さん
20/07/28 01:04:31.70 fsv75dfM.net
>>701
あ、イヤ、一次元は再起的やけど二次元は一時的かも知れんか
736:132人目の素数さん
20/07/28 01:07:13.41 fsv75dfM.net
いや
全ての点で1が普遍測度で総和が発散するからダメやな
737:132人目の素数さん
20/07/28 03:11:44.24 jhN+xo4C.net
>>697
P(X^2)=P(X)P(X)
738:132人目の素数さん
20/07/28 03:13:13.39 jhN+xo4C.net
>>704
途中で送信されてしまった。
P(X^2)=P(X)P(X)が前提ですか?
739:132人目の素数さん
20/07/28 05:59:38 phnCqcNa.net
θは0≦θ<2πなる定数とする。
実数xについての関数
f(x)=(x+1)(x-sinθ)(x-cosθ)(x-1)
の極大値および極小値が存在するならば、それを求めよ。
740:132人目の素数さん
20/07/28 07:16:03.79 F/WKy7rt.net
100円玉3個と50円玉2個を同時に投げて、100円玉の表の出た枚数をX、50円玉の表を出た枚数をYとする。(X.Y)の2次元分布を書き、X.Yが独立であるかどうかを言いなさい。
分からないです…
741:132人目の素数さん
20/07/28 07:48:24.42 abHG62rU.net
どこが分からないん?
742:132人目の素数さん
20/07/28 10:56:46 BFfCxRF2.net
100円玉、50円玉の単位が個だったり枚だったりすること?
743:132人目の素数さん
20/07/28 11:28:35 F71yKfYU.net
ワロタ
744:132人目の素数さん
20/07/28 12:58:36.87 aGL8fd4B.net
「Xが空集合のとき、包含写像X->Yは、空集合からYへのただ1つの写像である。」と教科書に書いてあるのですが、空集合からYへの写像はなぜ、必然的に包含写像になるのですか?
745:132人目の素数さん
20/07/28 13:04:09 gZ8MdCZG.net
>>685
プログラム組んだけど、うまく探索できないケースがあるな。
初期値が悪いせいか区別がつかない。
746:132人目の素数さん
20/07/28 13:28:52 RFqgOmVh.net
>>711
空集合は全ての集合の部分集合だから
空集合を定義域とする写像の注意点とか教科書に書いてありそうだけどな
もし書いていないなら不親切な本だね
【参考】空関数
URLリンク(ja.wikipedia.org)
747:132人目の素数さん
20/07/28 13:31:19 aGL8fd4B.net
>>713
リンク先を見てみましたが、空間数は包含写像であるとは書いてありません。
748:132人目の素数さん
20/07/28 13:39:24 qHF0/Chh.net
Γ(z)Γ(z+1/2)=√πΓ(2z)2^(1-2z)
の導出をお願いします
749:132人目の素数さん
20/07/28 13:43:18 RFqgOmVh.net
>>714
包含写像は部分集合から定まる写像のことでしょ?
空集合から特定の集合への写像は唯一つに定まるのだから、それが包含写像になる
750:132人目の素数さん
20/07/28 13:46:38 aGL8fd4B.net
教科書での包含写像の定義は、XがYの部分集合のとき、Xの元xにYの元yを対応させる写像を包含写像というというものです。
定義に従って証明するとどうなりますか?
751:132人目の素数さん
20/07/28 13:47:09 aGL8fd4B.net
間違えました。Xの元xにYの元xを対応させる写像を包含写像という、です。
752:132人目の素数さん
20/07/28 13:53:56 aGL8fd4B.net
Xが空集合のとき、X×Y=空集合だから、XからYへの写像はユニークだというのは分かります。ですが、そのユニークな写像が包含写像だというのが分かりません。
753:132人目の素数さん
20/07/28 13:54:54 3tKaz31X.net
URLリンク(davidlowryduda.com)
754:ula/
755:132人目の素数さん
20/07/28 14:00:21 JY7OMgas.net
たしか高木解析概論では
2^(2z)Γ(z)Γ(z+1/2)とΓ(2z)はどちらも
z→z+1/2の変換で2z倍になる凸関数だから
定数倍しか違わなくて
その定数はz=1いれると2√πと決まる(Γ(3/2)=√π/2を使う)
みたいな感じで証明してたような
この方針だと一般にガンマ関数のn倍角も示せる
黒川さんはゼータ関数からガンマ関数を定義して
n倍角公式はゼータにおける自然数の周期nごとでの組分けに対応する、という自明なところまで帰着して示しててエレガントだった覚えが
756:132人目の素数さん
20/07/28 14:08:56 RFqgOmVh.net
空集合には対応する元 x が存在しないので、自動的に条件を満たす
命題 A ⇒ B は A が偽なら必ず真になることと同じ
757:132人目の素数さん
20/07/28 14:10:15 O2Z+kvBJ.net
>>719
定義のまんまだと分からんてことは
論理の基礎知識がないな
758:132人目の素数さん
20/07/28 14:34:56 dOm/4wzo.net
これの2番、3番を教えていただけませんか?
よろしくお願い致します。
URLリンク(imgur.com)
759:132人目の素数さん
20/07/28 14:35:36 3M8CSP4N.net
>>707
1,2,3が百円玉、4,5が50円玉、1が表で0が裏として
[,1] [,2] [,3] [,4] [,5]
[1,] 0 0 0 0 0
[2,] 0 0 0 0 1
...
[31,] 1 1 1 1 0
[32,] 1 1 1 1 1
の32回の順列から
百円玉が表がでる枚数と頻度は
0 1 2 3
4 12 12 4
その確率は
0 1 2 3
4/32 12/ 32 12/32 4/32
50円玉での確率は
0 1 2
8/32 16/32 8/32
百円玉が1枚でる確率に50円玉が1枚でる確率をかけると12/32*16/32=3/16
一覧にすると(行列とも1から始まる)
> outer(px,py)
Big Rational ('bigq') 4 x 3 matrix:
[,1] [,2] [,3]
[1,] 1/32 1/16 1/32
[2,] 3/32 3/16 3/32
[3,] 3/32 3/16 3/32
[4,] 1/32 1/16 1/32
百円玉が1枚でて50円玉が1枚でている場合を32回から数え上げると6回なので6/32=3/16
これを繰り返して表にすると
> as.bigq(matrix(apply(gr,1,g),nrow=4,ncol=3)/32)
Big Rational ('bigq') 4 x 3 matrix:
[,1] [,2] [,3]
[1,] 1/32 1/16 1/32
[2,] 3/32 3/16 3/32
[3,] 3/32 3/16 3/32
[4,] 1/32 1/16 1/32
一致するので独立性が検証された。
760:132人目の素数さん
20/07/28 14:36:26 dOm/4wzo.net
>>724
ちなみに2番の問題文のs^2の式にはΣが抜けてます。よろしくお願い致します。
761:132人目の素数さん
20/07/28 14:38:19 RFqgOmVh.net
あえて述語論理の形に書けばこうなるか
集合 X, Y に対し、写像 f : X → Y が包含写像であるとは、条件
X ⊂ Y かつ「 ∀x, [x ∊ X ⇒ f(x) = x] 」
を満たすことと同値
この条件が X = ∅ (空集合)のときにどうなるか考えれば良い
762:132人目の素数さん
20/07/28 14:42:38 aGL8fd4B.net
>>727
x∈Xは常に偽なので確かに真になります。
でも、X ⊂ Y かつ「 ∀x, [x∈X ⇒ f(x) = x] 」を
X ⊂ Y かつ「 ∀x, [x∈X ⇒ f(x) ≠ x] 」に変えても真だと思います。
763:132人目の素数さん
20/07/28 14:47:09 RFqgOmVh.net
>>728
別に問題なくね?
上の条件さえ満たせば包含写像なんだから
他の条件はどうでもいい
764:132人目の素数さん
20/07/28 14:52:34 aGL8fd4B.net
>>729
>>711で、「Xが空集合のとき、包含写像X->Yは、空集合からYへのただ1つの写像である。」と教科書に書いてあると書きましたが、
なぜわざわざ包含写像という言葉を入れたのかが分かりません。
「Xが空集合のとき、非包含写像X->Yは、空集合からYへのただ1つの写像である。」と書いても間違いではないですよね。
765:132人目の素数さん
20/07/28 14:58:33 RFqgOmVh.net
>>730
包含写像の定義はあれど「非包含写像」の定義はないでしょ?
そう書かれている理由は多分、包含写像とみなしたほうが自然だからだと思う
766:132人目の素数さん
20/07/28 14:59:54 aGL8fd4B.net
>>731
f(x) ≠ xが非包含写像の定義だと思います。
767:132人目の素数さん
20/07/28 15:03:51
768: ID:RFqgOmVh.net
769:132人目の素数さん
20/07/28 15:09:32.31 JXiR4EAQ.net
>>732
Xが空集合のとき、包含写像かつ非包含写像X->Yは、空集合からYへのただ1つの写像である。」と書いても間違いではないですよね。
770:132人目の素数さん
20/07/28 15:17:43.18 aGL8fd4B.net
ところで、∀x, [x∈空集合 ⇒ f(x) = x] という書き方自体は許されますか?
fが空関数のとき、f(x)という書き方は許されないのではないですか?
771:132人目の素数さん
20/07/28 15:19:59.06 aGL8fd4B.net
f(x)という記号は、Γをfのグラフとするとき、(x, y)∈Γ⊂X×Yとなるようなyを表す記号です。
Xが空集合のときにはそのようなyは存在しないのでf(x)という記号はナンセンスではないですか?
772:132人目の素数さん
20/07/28 15:34:54.90 mej1QqOc.net
ナンセンスというか厳密ではない
厳密に書くならおそらく以下になる
論理式P(x,f)= f:X→Y∧X⊂Y∧(x∈X⇒(x,x)∈f)とおく
∀x∃!f(P(x,f))
⇔∀x∃f((P(x,f))∧(∀f'(P(x,f'))⇒(f'=f)))が成り立つとき、唯一つ存在するfを包含写像と呼ぶ
特にこれはX=φで真である(厳密ではない補足:XからYの関数という条件から空関数にしかなり得ないのでf'=fが必ず成り立つ)
細かく考えると大変だから、そんなに意識する必要はない
気になるならf(x)という記号はナンセンスなのでは?と思ったら上に変換できるようにしておけば問題ない
773:132人目の素数さん
20/07/28 16:17:42.03 aGL8fd4B.net
空関数は包含写像であるとも包含写像でないとも言えると思います。それにもかかわらず、なぜあえて
「Xが空集合のとき、包含写像X->Yは、空集合からYへのただ1つの写像である。」と教科書に書いたのかが不可解です。
774:132人目の素数さん
20/07/28 16:24:29.83 3tKaz31X.net
>>738
まずfがXからYへの写像であるの定義が
f ⊂ X×Y かつ ∀x ∃!y (x,y)∈f
でしょ?
X=φのときはこの条件を満たすのはf=φのみでしょ?
次にX⊂Yのとき、包含写像i:X→Yの定義は
i ={(x,x) | x∈X}
でしょ?
特にYが任意の集合、Xが空集合のときi=φになるでしょ?
775:132人目の素数さん
20/07/28 16:27:10.91 RFqgOmVh.net
「空関数は包含写像でない」は偽
なぜなら、「 A ならば B 」の否定は「 A かつ B でない」であり、
空関数において A に相当するものは偽だから
776:132人目の素数さん
20/07/28 16:44:31.72 aGL8fd4B.net
>>739
X=φとします。
このとき何かのオブジェクトcに対して{(x,c) | x∈X}=φは定数関数です。
もちろん{(x,c) | x∈X}={(x,x) | x∈X}=φなのでこの定数関数は包含写像でもあります。
「Xが空集合のとき、定数関数X->Yは、空集合からYへのただ1つの写像である。」とは書かずに、
「Xが空集合のとき、包含写像X->Yは、空集合からYへのただ1つの写像である。」と書いたのはなぜか?という疑問があります。
777:132人目の素数さん
20/07/28 16:57:53.69 RFqgOmVh.net
空関数が定数関数かどうかは微妙な話だな
空関数を包含写像とみなすのは φ ⊂ Y が常に成り立つという意味で自然だが、
定数関数は常に Y の一定の値をとる関数という意味で考えると、
値をとらない関数を定数関数と呼ぶのは違和感がある
まあこれは何を自然と感じるかの話であって論理的にはどうでもいい話だが
778:132人目の素数さん
20/07/28 17:14:11.35 JY7OMgas.net
そうだね
一方で包含写像は全ての部分集合に対して定義しておいた方が良さそう
779:132人目の素数さん
20/07/28 18:07:06.04 JXiR4EAQ.net
>>738
実際に包含写像の条件を満足するのだから、不可解というのはナンセンスです
780:132人目の素数さん
20/07/28 18:11:29.88 aGL8fd4B.net
>>744
包含写像派の人と定数関数派の人がいたとします。定数関数派の人から見ればフェアでないということになります。
「Xが空集合のとき、X->Yは、空集合からYへのただ1つの写像である。」と書けば問題ないと思います。
781:132人目の素数さん
20/07/28 18:24:39.71 JXiR4EAQ.net
著者は包含写像と見たいのになんで他派閥とかでっちあげてフェアにする必要が?
782:132人目の素数さん
20/07/28 18:35:42.52 RFqgOmVh.net
どんな本かわからないけど、要するに著者は
包含写像は部分集合という集合の関係から自然に(しかも一意に)定まる写像であって、
定義域が空集合の場合は特別だけどそれでも包含写像なんだよ
って言いたかったんじゃないかな
定数関数は定義域が空集合でなく値域が 2 元以上ある集合の場合は一意に定まらないし
空関数だけを特別に議論する意義はないと思うし
定数関数の一種とみなし�
783:トもいいけど、その本の著者は包含写像派なんでしょ そのあたりは著者の思想が反映されている部分とも言える 教科書だからと言ってフェアに書かれているわけではないし、フェアに書く必要もない 高校までの数学の教科書と大学以降の数学の教科書との違いだな
784:132人目の素数さん
20/07/28 18:57:01.46 WKJ/C1Xp.net
-1<a<1かつ-1<b<1かつa≠bのとき、
f(x)=(x+1)(x-a)(x-b)(x-1)
は相異なる3つの極値を持つと言えますか?
微分計算の後の3次方程式が解けずに困っています。教えてくださる方、よろしくお願いいたします。
785:132人目の素数さん
20/07/28 19:10:43.42 RFqgOmVh.net
>>748
平均値の定理を使ったらいいんじゃね
786:132人目の素数さん
20/07/28 19:34:37.23 RFqgOmVh.net
平均値の定理を使うまでもないか
-1 < a < b < 1 のとき、 f'(-1) < 0, f'(a) > 0, f'(b) < 0, f'(1) > 0
だから f'(x) が連続より中間値の定理を使えばいいかな
787:132人目の素数さん
20/07/28 19:42:54.41 RgwT6snV.net
>>748
2つの極小値の値が等しくなることがあるので、異なる3つの極値をもつとはいえない。
788:132人目の素数さん
20/07/28 19:43:32.03 RFqgOmVh.net
>>748
ちなみに a = -b (0 < b < 1) のときは f(x) は偶関数となるから、
極値が異なるとは限らない
(極値点は異なる)
789:文部大巨人
20/07/28 19:43:56.13 1qxcPceH.net
フェルマーの最終定理って
おかしくないか?
あれはあくまで予想だろ?
実際に証明をしたのはワイルズさんなのだから
ワイルズの定理だろ、くそが。
790:132人目の素数さん
20/07/28 20:06:12 AMAQqZwd.net
>>750
ありがとうございます。存在を示せばよく、方程式を解く必要がないのですね。
791:132人目の素数さん
20/07/28 20:07:12 AMAQqZwd.net
>>752
極値点は異なるが極値は異なることが理解できました。確かに偶関数になると極値は等しい値を取りますね。ありがとうございます。
792:132人目の素数さん
20/07/28 20:09:08 Vvevl4mj.net
>>706
極大が1つ、極小が2つある。
θ→90°-θ とか θ→450°-θ では元のまま。
θが180°ずれると、左右が入れ替わる。(上下は元のまま)
極大
θ(°), x , f(x),
0, (√17 -1)/8 = 0.39039 , (51√17 -107)/512 = 0.20172
15, 0.526636 , 0.0850198
30, 0.647150 , 0.0187189
45, 1/√2 = 0.707107 , 0
60, 0.647150 , 0.0187189
75, 0.526635 , 0.0850198
90, (√17 -1)/8 = 0.39039 , (51√17 -107)/512 = 0.20172
105, 0.254284 , 0.341535
120, 0.124467 , 0.455905
135, 0 , 1/2,
150, -0.124467 , 0.455905
165, -0.254284 , 0.341535
180, -(√17 -1)/8 = -0.39039 , (51√17 -107)/512 = 0.20172
793:132人目の素数さん
20/07/28 20:20:03 Vvevl4mj.net
>>706
>>748
根 {-1, cosθ, sinθ, 1} で、3重根以上はない。
異なる根の間には極値があり(ロルの定理)、重根も極値。
∴ 極大が1つ、極小が2つある。
θ→90-θ θ→450-θ では元のまま。
θがπずれると、左右が入れ替わる。(上下は元のまま)
極小1
θ(°), x, f(x)
0, 0.983236 , -0.0004169
15, 0.526636 , 0.0850198
30, 0.939224 , -0.0037892
45, 0.905646 , -0.0070875
60, 0.939224 , -0.0037892
75, 0.983236 , -0.0004169
90, 1 , 0
105, (7+√17)/(8√2) = 0.983150 , -(85√17 -349)/2048 = -0.0007148
120, 0.935730 , -0.0124505
135, (√3)/2 = 0.866025 , -1/16 = -0.06250,
150, 0.785678 , -0.180584
165, 1/√2 = 0.707107 , -3/8 = -0.37500
180, (1+√17)/8 = 0.64039 , -(107+51√17)/512 = -0.61968
極小2
θ(°), x, f(x)
0, -(1+√17)/8 = -0.64039 , -(107+51√17)/512 = -0.61968
15, -0.591310 , -0.86097
30, -0.561855 , -1.03757
45, -(1/4)√(9-√17)) = -0.55209 , -(71+17√17)/128 = -1.1023
60, -0.561855 , -1.03757
75, -0.591310 , -0.86097
90, -(1+√17)/8 = -0.64039 , -(107+51√17)/512 = -0.61968
105, -1/√2 = -0.707107 , -3/8 = -0.37500
120, -0.785678 , -0.180584
135, -(√3)/2 = -0.866025 , -1/16 = -0.06250
150, -0.93573 , -0.0124505
165, -(7+√17)/(8√2) = -0.983150 , -(85√17 -349)/2048 = -0.0007148
180, -1 , 0
794:132人目の素数さん
20/07/28 20:3
795:0:33 ID:aGL8fd4B.net
796:132人目の素数さん
20/07/28 20:31:13 Vvevl4mj.net
>>757 (訂正)
極小1
θ(°), x, f(x)
0, 1 , 0,
15, 0.983236 , -0.0004169
1行ずれてますた....orz
797:132人目の素数さん
20/07/28 20:50:52.84 aGL8fd4B.net
もしかして、有限回というのを定義するのに自然数を使わないといけないから循環論法になっているということですか?
でも解析入門1はそこまで厳密指向の本ではないように思います。
798:132人目の素数さん
20/07/28 21:01:26.91 RFqgOmVh.net
>>758
多分、実数の公理から(ペアノの公理を使わずに)数学的帰納法の原理を証明したかったんじゃないかな
素朴な定義だと難しいんじゃね
799:132人目の素数さん
20/07/28 21:04:45.28 RFqgOmVh.net
>>760
いやそれもあるんじゃないかな
p.11でわざわざ「 m 個の元を持つ集合」と「有限集合」を定義しているし
800:132人目の素数さん
20/07/28 21:24:31.31 RgwT6snV.net
>>758
有限回もあるが、それ以前に実数は自然数から定義するだろ。
801:132人目の素数さん
20/07/28 21:26:36.80 HWdhKnmN.net
杉浦解析を持っていないのでなんとも言えないが、順序体としての実数の言語において、再帰的集合の性質が一階述語表現可能でないので、0∈A∧∀x(x∈A⇒x+1∈A)という再帰的集合Aもまた一階述語定義可能でない(自明な結果ではない)
ただ、杉浦解析は代数的な概念について厳密ではないという話も聞くし、そこまで考察した上で書かれてるかはわからない
実数は自然数から定義するというのは、上のように実数の公理から始めるのではなく、
集合論の言語においてZFC公理系を仮定した場合の話
802:132人目の素数さん
20/07/28 21:39:04.79 RFqgOmVh.net
杉浦解析では実数の公理から始めて、途中で自然数を定義しているね
実数体 R の存在は最初から仮定されていて、
自然数の定義は「 R のすべての継承的部分集合に含まれる実数」としている
その代わりに(?)ペアノの公理を使わずに数学的帰納法の原理を「証明」している
有理数体 Q から R を得る手続き(完備化)は演習問題になっているね
803:132人目の素数さん
20/07/28 23:21:09.75 F5Lmt1U6.net
なるほど
継承的集合というのはあまり聞き慣れないが、inductive setをそう訳したのかもしれない
つまり上で書いた帰納的集合Aと全く同じもの
二階述語論理とかあまり気にしなければ純粋に実数の公理だけで展開できるから綺麗ではある
何故単位元+単位元+…で定めないのか?という話だけど、実はserge langのUndergraduate Analysis(杉浦解析より後)ではそう定めている
ただ読んでみればわかるが、これだとZFCでの自然数が実数として解釈されることを示すという手はずを踏む必要があり、流石ブルバキメンバーではあるが学部生には難しいかもしれない
杉浦の心情は分からんが、予想としては、langのようなやり方は知らなかったor学部生には難しい、デデキント切断かコーシー列で導入するよりは公理的に書いたほうが分かりやすい、といった判断から純粋に順序体としての実数公理から始めたのかもしれない
804:132人目の素数さん
20/07/28 23:37:58.58 F5Lmt1U6.net
Charles C. PughのReal Mathematical Analysis(langの本より更にあと)だと、現在の数学の教える傾向としては、Rが公理的に定義されるとして扱うとP.10で言及されている
つまり杉浦解析はトレンドそのもののやり方っぽい
(ちなみに、上記本ではそれを批判していて、ZFCでデデキント切断で実数を構成
805:して議論を展開している) 色々なやり方があって、本によってやり方が違うというのはそんな珍しいことではない
806:132人目の素数さん
20/07/29 00:10:51.37 +YZdIpCR.net
任意の実数a,bに対し、以下が成立することを証明せよ。
(1)a<p<bなる有理数pで、整数l,m,nを用いて(la+mb)/nの形で表されないものが存在する。
(2)a<q<bなる代数的無理数qで、整数l,m,nを用いて{(√(lab))^(1/m)}/nの形で表されないものが存在する。
(3)a<r<bなる超越数rで、整数l,m,nを用いて{π^(l/m)}/nの形で表されるものが存在する。
807:132人目の素数さん
20/07/29 00:18:06.20 BoovlrKA.net
2<p<3 である任意の有理数 p にたいし
p = (2l + 3m) /n
を満たす整数 l,m,n が存在する
808:132人目の素数さん
20/07/29 01:09:09 iLCpPMvx.net
>>698
確率変数XとYが独立とは、(X,Y)から定まる同時分布関数がXとYの周辺分布関数の積でかけることです。
>>705
X同士が互いに独立とは仮定しません。
809:132人目の素数さん
20/07/29 01:37:10.75 zxtk4W6O.net
>>770
分布関数の積じゃなく分布密度関数の積だろ
なんでそんな迂遠な定義を覚えてるんだ?
密度関数が存在する分布なんて一般でないぞ
元の問題は密度関数が存在しなくても成り立つが
密度関数を使った証明を望んでるのか?
俺は一般の定義で一般の証明しか知らん
810:132人目の素数さん
20/07/29 01:53:39 CdYMOld6.net
>>768-769
出題から反例が早くてワロタ
こういう間違った問題は誰が考えているんだろ
自作問題?
811:132人目の素数さん
20/07/29 02:19:26 0b6MtoQy.net
>>590
お前らが小学生の家庭教師をやっているとしたら
どこまで覚えさせる??
812:132人目の素数さん
20/07/29 02:48:24.87 vPI3GJy4.net
間違ってる問題は論外だけど間違ってなくても問題のセッティングがなんか変なの多い
たぶん同一人物が作り出してる
813:132人目の素数さん
20/07/29 05:44:22.55 mg8FsFrz.net
>問題のセッティングがなんか変なの多い
仮定がナンセンスだったり結論がナンセンスだったり、
あるいは見掛け倒しで証明が自明だったり、何というか、
その問題が暗黙のうちに目指しているであろうモチベーションが
最初からおかしいんだよな。
「問題作成のために無理やり生み出されたゴミクズでございます」
っていうニオイがプンプンするわけ。
814:132人目の素数さん
20/07/29 06:08:47.67 iLCpPMvx.net
>>771
言ってることがわかりません。
R値の確率変数に対しては分布関数は必ず存在して、一般には密度関数は存在しないと思います。
815:132人目の素数さん
20/07/29 08:38:23.96 kcjMgOap.net
a,bを整数の定数とする。xについての5次方程式
x^5+ax+b=0
の重複を込めた5つの解がすべて複素平面上の単位円|z|=1上にあるとき、以下の問いに答えよ。
(1)a,bが変化するとき、この方程式が持つ実数解の個数として考えられる値をすべて求めよ。
(2)a,bが満たすべき条件を求めよ。
(3)この方程式の解zで、1/(az+b)もまた解となるzが存在するとき、a,bが満たすべき条件を求めよ。
816:132人目の素数さん
20/07/29 09:26:50.83 BoovlrKA.net
>>776
ヨコだけど
確率変数XとYが独立とは、(X,Y)から定まる同時分布関数がXとYの周辺分布関数の積でかけることです。
↑これ間違ってるよ
817:132人目の素数さん
20/07/29 09:46:20.20 vPI3GJy4.net
>>777
てか問題の条件満たすのa=0,b=±1だけだよ?
818:132人目の素数さん
20/07/29 09:50:59 BoovlrKA.net
>>778
あ、撤回
同時分布関数とかいうのを
F_XY(X<a, Y<b)
とか定義すれば言えなくはないな
こんな定義見たことないけど
普通は
X,Yが独立:⇔∀a,b P(X<a,Y<b)=P(X<a)P(Y<b)
じゃない?
819:132人目の素数さん
20/07/29 10:12:58.16 NhZIjORF.net
>>779
なんでそれ
820:を論証しないの?
821:132人目の素数さん
20/07/29 10:29:32.49 vPI3GJy4.net
面白そうな問題や本当に分からなくて困ってる問題は解こうかと思うけど、謎の自作問題に対しては設定が良くないことだけ書けば十分
822:132人目の素数さん
20/07/29 12:15:26.26 OtDUnDGv.net
志村五郎の本にこんな感じの話が書いてありました。
点(3,5), (3,7)を通る直線の方程式を求めよという問題を志村が教えていた東京大学の学生に出題するとそのような直線はないと解答する学生がかならずいた。
そんなバカな学生もいるんですか?本当に。
823:132人目の素数さん
20/07/29 12:41:24.56 CdYMOld6.net
>>783
ワロタ
「公式」の分母が 0 になるからってことか
本当ならやばいな
824:132人目の素数さん
20/07/29 13:08:03.75 0b6MtoQy.net
勾配がある直線しか
頭に浮かばなかったんだろう…。
825:132人目の素数さん
20/07/29 13:38:51 zxtk4W6O.net
>>780
それ知ってたら即座だろなー
826:132人目の素数さん
20/07/29 15:19:18 JcI53Ddd.net
>>781
単位円周上で考える。
z = e^(iθ) を >>777 に入れると
e^(i5θ) + a・e^(iθ) +b = 0,
(実部)
0 = cos(5θ) + a・cosθ + b
= T_5(cosθ) + a・cosθ + b
= 16(cosθ)^5 -20(cosθ)^3 + (5+a)cosθ + b,
(虚部)
0 = sin(5θ) + a・sinθ
= sinθ{U_4(cosθ) + a},
= sinθ{16(cosθ)^4 -12(cosθ)^2 +(1+a)}
これらが (重複を込めて) 5つの共通解をもつ。
解の1つは
sinθ = 0,
θ = nπ, (z = ±1)
±(1+a) + b = 0,
他の解は
-5/4 ≦ U_4(cosθ) ≦ 5,
-5 ≦ a ≦ 1,
これらのうち、5つの解を共有するのは
a=0, b=±1 だけ
827:132人目の素数さん
20/07/29 17:16:35.42 0b6MtoQy.net
>>783-785
あれ?
勾配がない直線って
何か論理的におかしいな…。
正確には 勾配として0の値を持つ直線…というべきか。
でも、勾配って幅と高さの両方から求められる変化量が定義だよな。
グラフ x = 3 などは 勾配が0 なのか、 勾配を持っていないのか。
どっちだ??
828:132人目の素数さん
20/07/29 17:52:43.79 vPI3GJy4.net
強いて言うなら勾配は±∞でしょ
829:132人目の素数さん
20/07/29 18:15:56.11 zxtk4W6O.net
「有限の勾配がない」でいいでしょ
830:132人目の素数さん
20/07/29 18:46:23 4ujF9O+X.net
△ABCの周上に3点P,Q,Rを三角形をなすようにとる。また点Xから三角形の各頂点までの距離のうち最小のものをd(X)とするとき、以下の最大値を与えるP,Q,Rのとり方を説明せよ。
d(P)d(Q)d(R)S
ただしSは△ABCの面積である。
831:132人目の素数さん
20/07/29 18:47:15 4ujF9O+X.net
>>791
訂正
Sは△PQRの面積である
832:132人目の素数さん
20/07/29 18:52:40 Q8u5RfL7.net
>>788
直線なら勾配を持ってなくてもいいじゃない
一次関数とは別物よ
833:132人目の素数さん
20/07/29 19:58:48.11 p0NPT+43.net
ある円環内の温度を求める問題を解いていたのですが
y=<c1cos(pθ)+c2sin(pθ)>(c3r^p+c41/r^p)
境界条件 r=10の時f(θ)=15cosθ,r=20の時f(θ)=30sinθ
を満たすc1-c4がわかりません。p=1と単純に考えるとc1-c4は出ませんでした。どなたか教えていただけ無いでしょうか。
834:132人目の素数さん
20/07/29 20:42:42.08 ck1YOXiH.net
>566のワインを傾ける問題を続けているんだけど、ここでひっかかったので
どういう方針を立てればよいのか助言をお願いします。
直線 y = a*x + b (a,bは既知の定数)が、曲線 y=-cos(√(x^2+t^2)) の接線になるようなtの値を求めたい。
ソルバーを使った解
835:法でも結構です。
836:イナ
20/07/29 21:40:36.75 DoToA506.net
前>>699
>>528
π(3π/2-t)^2sintdt=[π(3π/2-t)^2(-cost)](π/2→3π/2)-∫[π/2→3π/2]π(2t-3π)(-cost)dt
=0-π^3(-1)+∫[π/2→3π/2]π(2t-3π)(-cost)dt
=π^3+[π(2t-3π)(-sint)](π/2→3π/2)-∫[π/2→3π/2]2π(-sint)dt
=π^3+0-π(-2π)(-1)+2π∫[π/2→3π/2]sintdt
=π^3-2π+2π[-cost](π/2→3π/2)
=π^3-2π+2π×0
=π^3-2π
=11.239944……
もうちょいかな。
837:132人目の素数さん
20/07/29 21:51:45 kWw5YHB+.net
cosx/(x^2-a^2) で-∞から+∞まで積分したときの値教えて欲しいです。ぶっちゃけ留数定理とかよくわかってないです
838:132人目の素数さん
20/07/29 23:51:01.16 E5E4YFuK.net
>>797
πe^-a
839:イナ
20/07/29 23:57:47.73 DoToA506.net
前>>796訂正。
>>528
∫[π/2→3π/2]π(3π/2-t)^2sintdt
=[π(3π/2-t)^2(-cost)](π/2→3π/2)-∫[π/2→3π/2]π(2t-3π)(-cost)dt
=0-π^3×0+∫[π/2→3π/2]π(2t-3π)(-cost)dt
=[π(2t-3π)(-sint)](π/2→3π/2)-∫[π/2→3π/2]2π(-sint)dt
=0-π(-2π)(-1)+2π∫[π/2→3π/2]sintdt
=-2π+2π[-cost](π/2→3π/2)
=-2π-2π×0
=-2π<0
∴飲めない。
840:132人目の素数さん
20/07/30 11:30:56.84 bRoKh78U.net
単位接ベクトルe→,原点からの距離s,曲率k,単位法線ベクトルn→として、
de→/ds=kn→からd^2x/ds^2=-kdy/ds,d^2y/ds^2=kdx/dsの2つの微分方程式が成立することを示せ
何をすればよいのやら完全にこんがらがってしまいました…
841:132人目の素数さん
20/07/30 12:12:31.58 3ZV9F9B2.net
お金?の為に、我が子も利用して稼いでいると噂の『東さと』さん
その夫は中小企業を専門にする高額セミナー講師だとか!
お金大好き夫婦なの?
URLリンク(www.bing.com)
842:132人目の素数さん
20/07/30 12:18:16.33 vRjKPm0i.net
問題文に未定義の用語や記号を書いてしまう人はコミュ障ってことでおk?
843:132人目の素数さん
20/07/30 12:30:13.34 7tawZ/Rl.net
>>800
・定義: ds² = dx² + dy²
|(dx/ds, dy/ds)|² = (dx/ds)² + (dy/ds)² = 1
∴ e = (dx/ds, dy/ds)
・回転行列(90度): R
[ 0, -1 ]
[ 1, 0 ]
・定義: de/ds = k n {妥当性: 0 = d(1)/ds = d(e・e)/ds = 2 e・(de/ds) ∴ e⟂(de/ds) }
de/ds = (d²x/ds², d²y/ds²)
= k n = k R e = k (-dy/ds, dx/ds)
844:132人目の素数さん
20/07/30 13:02:41.76 BEHUooMV.net
1の三乗根のうち、1でないもののうち一つをω、他方をω'と表す。
xについての方程式
Σ[k=0,...,n] x^k = 0
がωとω'の両方を解に持つような自然数nを全て求めよ。
ただし任意の実数xに対してx^0=1とする。
845:132人目の素数さん
20/07/30 13:21:04.61 6oIMYSQz.net
n=3m+2の形のとき
846:132人目の素数さん
20/07/30 13:43:13.58 vRjKPm0i.net
x^3 - 1 = (x-1)(x^2 + x + 1)
(x-ω)(x-ω') = x^2 + x + 1
847:132人目の素数さん
20/07/30 15:22:47.14 BEHUooMV.net
>>805
ありがとうございます
n=3mと3m+1のときに存在しないことの証明ですが、
「n=3m+2のときにωが解
⇒n=3m+3のときは
(n=3m+2にωを代入)+x^(3m+3)
=0+ω^(3M)
=1
で因数定理よりωは解ではない」
の流れで良いでしょうか。
848:132人目の素数さん
20/07/30 17:21:10.06 QqT3M+Ld.net
1+x+x^2+ ・・・・ +x^n = (1-x^{n+1})/(1-x)
の零点は 1の (n+1)乗根 (ただし1は除く) すなわち
e^(ik
849:π/(n+1)) (k=1,2,・・・,n) また ω = e^(i2π/3), ω' = e^(-i2π/3).
850:132人目の素数さん
20/07/30 17:22:34.69 QqT3M+Ld.net
訂正...orz
e^(i2kπ/(n+1)) (k=1,2,・・・,n)
851:132人目の素数さん
20/07/30 18:44:19.17 417El1m4.net
>>795
自力解決しました。
> WG(0)
[1] 18.4399
> WG(9)/WG(0)
[1] 0.5190115
> WG(10)/WG(0)
[1] 0.4824539
> WG=Vectorize(WG)
> uniroot(function(x) WG(x)/WG(0)-1/2,c(9,10))$root
[1] 9.512676
傾ける角度は9.51°
>696のモンテカルロでの値がいい線いってる。
852:132人目の素数さん
20/07/30 18:54:45.79 BOja3v8r.net
確率分布の問題になります 次のデータを得た
10.5, 8.5, 7, 10, 11.5, 8, 12, 12.5
これらは正規分布に従うとする.そのとき,以下の問いに答えよ
1. 標本平均 x の値を以下の中から選択せよ
(1) 1.870829, (2) 2, (3) 3.5, (4) 4, (5) 10
2. (不偏)標本分散 s2 の値を以下の中から選択せよ
(1) 1.870829, (2) 2, (3) 3.5, (4) 4, (5) 10
3. (不偏)標本標準偏差 s の値を以下の中から選択せよ
(1) 1.870829, (2) 2, (3) 3.5, (4) 4, (5) 10
4. 自由度 7 の両側 0.01 点 t7(0.01) の値を以下の中から選択せよ
(1) 3.2498, (2) 3.3554, (3) 3.4995, (4) 3.8325, (5) 4.0293
5. 母平均 µ の 99% 信頼区間をを以下の中から選択せよ
(1) [7.702044,12.29796], (2) [7.627374,12.37263], (3) [7.52548,12.47452],
(4) [7.290013,12.70999], (5) [7.150855,12.84915]
最初の3問題が5、3、1になるのはわかります
正規分布表のみかたがわかりません
853:132人目の素数さん
20/07/30 20:27:16 417El1m4.net
>>811
> d=c(10.5, 8.5, 7, 10, 11.5, 8, 12, 12.5)
> mean(d)
[1] 10
> var(d)
[1] 4
> sd(d)
[1] 2
> qt(0.995,7)
[1] 3.499483
> t.test(d,conf.level = 0.99)
One Sample t-test
data: d
t = 14.142, df = 7, p-value = 2.097e-06
alternative hypothesis: true mean is not equal to 0
99 percent confidence interval:
7.525492 12.474508
sample estimates:
mean of x
10
854:132人目の素数さん
20/07/30 21:28:00.83 vRjKPm0i.net
>>807
因数定理も何も実際に代入して 0 にならないなら解じゃないでしょ
1 ≠ 0 で十分
855:132人目の素数さん
20/07/30 21:44:02.45 BOja3v8r.net
積分の問題です
関数f(x)を次で定める:
f(x) =∫【 0→x】 (1−t^2)e^(−t^2)dt (x ∈R).
このとき
(1) lim【x→+∞】f(x), lim【x→−∞】f(x) を求めよ.
(2) y = f(x)の極値と変曲点を求めよ
eの階乗のところが分かりません
856:132人目の素数さん
20/07/30 21:49:13 vRjKPm0i.net
eの階乗って何?
857:132人目の素数さん
20/07/30 21:51:49 YlIxIxQs.net
t^2=uでΓ関数
858:132人目の素数さん
20/07/30 22:00:45.35 vRjKPm0i.net
"eの階乗" でググったら出てきてワロタ
微積の質問です -関数f(x)を次で定める: f(x) =∫【 0→x】 (1-t^2)e- 数学 | 教えて!goo
URLリンク(oshiete.goo.ne.jp)
859:132人目の素数さん
20/07/30 22:24:33.87 IvxNF8kO.net
>>780
PってそれぞれX,Y,(X,Y)の確率速度で
P(X<a)=F_X(a)
P(Y<b)=F_Y(b)
P(X<a,Y<b)=F_XY(a,b)
ですよね?
860:132人目の素数さん
20/07/30 22:28:58.20 BOja3v8r.net
1
861:814です
20/07/30 22:30:37.34 BOja3v8r.net
t^2=u代入で解けました
862:132人目の素数さん
20/07/31 01:23:51 lUZmSg6J.net
>>807
mod
863:(1+x+xx) で考えると 1+x+xx+・・・・・+x^{3m} = 1 + x(1+x+xx)(1+x^3+・・・・+x^{3(m-1)}) ≡ 1, 1+x+xx+・・・・・+x^{3m+1} = 1 + x + xx(1+x+xx)(1+x^3+・・・・+x^{3(m-1)}) ≡ 1+x, 1+x+xx+・・・・・+x^{3m+2} = (1+x+xx)(1+x^3+・・・・+x^{3m}) ≡ 0,
864:132人目の素数さん
20/07/31 02:13:16 lUZmSg6J.net
>>814
>>814
部分積分で
f(x) = (x/2)e^(-xx) + (1/2)∫[0,x] e^(-tt) dt
= (x/2)e^(-xx) + ((√π)/4) erf(x),
f '(x) = (1-xx)e^(-xx),
f "(x) = 2x(xx-2)e^(-xx),
(1)
lim[x→+∞] f(x) = (√π)/4 = 0.44311346
lim[x→-∞] f(x) = -(√π)/4 = -0.44311346
(2)
極値
f '(x) =0 より x=±1,
f(1) = 1/(2e) + ((√π)/4)erf(1) = 0.557352 (極大)
f(-1) = -1/(2e) - ((√π)/4)erf(1) = -0.557352 (極小)
変曲点
f "(x) =0 より x=±√2,
f(-√2) = 1/(ee√2) + ((√π)/4)erf(√2) = 0.518648
f(√2) = -1/(ee√2) - ((√π)/4)erf(√2) = -0.518648
865:132人目の素数さん
20/07/31 02:20:20 lUZmSg6J.net
変曲点
f "(x) =0 より x= ±√2, 0
f(-√2) = -1/(ee√2) - ((√π)/4)erf(√2) = -0.518648
f(0) = 0,
f(√2) = 1/(ee√2) + ((√π)/4)erf(√2) = 0.518648
866:132人目の素数さん
20/07/31 06:02:41 EiI9yUPg.net
AB=4,BC=5,CA=6の△ABCの周および内部の領域をDとする。
D内に以下の条件を全て満たすように2つの正方形SとTを配置したい。
Sの一辺の長さsを求めよ。ただしTの一辺の長さをtとすると、s≧tである。
(i)SとTはともにDに含まれる。
(ii)SはTの外部にあるか、またはSとTは外接している。
(iii)条件(i)(ii)を満たすS,Tの配置は様々であるが、その中で積stが最大である。
867:132人目の素数さん
20/07/31 06:05:43 HAkpTVcf.net
>>799
integral_(π/2)^((3 π)/2) π ((3 π)/2 - t)^2 sin(t) dt = 2 π^2
≒19.739
でも満杯になる量の答としては間違っている。
868:132人目の素数さん
20/07/31 06:43:36 yG2F0MGz.net
>>788-790 >>793
整理するよ。
A.
x = 3 のような縦棒の直線の場合、
勾配は存在しない。 (強いて言えば +- ∞)。
なぜなら、これを微分しようとしても、
変数x が 変数になっていないので
xに関しては微分が不可能。
ゆえに勾配は存在しないと言える。
B.
y = 5 のような横棒の直線の場合、
勾配は存在し、それは 0 の値となる。
y = 3 を言い換えると
f(x) = ax + b
= 0*x + 3
a が ゼロ、 b が3 の時の、xの 1変数1次関数。
これをxで微分したら
f '(x) = 0*1 + 0 = 0
ゆえに 「すべてのxについて 0値をとる」 と分かる。
869:132人目の素数さん
20/07/31 09:28:03.44 Lr9LdclZ.net
力学系のこの問題を教えてください
関数 f(x)=5x/6 +3 で与えられた力学系を考える。
1より大きい任意の点を初期点とする軌道をグラフを使って分析せよ。また、1次関数と2次関数の定める力学系の相違点を述べよ。
870:132人目の素数さん
20/07/31 12:51:38.98 ImynyFWQ.net
>>799
飲めるように問題を改変、ついでにジュースに変えたw
y = -cos(x) -π<x<π の曲線をy軸の回りに回転させてできる面からなるワイングラスにジュースが満杯である。
極薄のストローを刺してジュースを半分飲んでいいと言われた。
満杯のときの何%の高さまで飲んでよいか?
URLリンク(i.imgur.com)
871:132人目の素数さん
20/07/31 12:52:00.54 lUZmSg6J.net
>>797
∫[-∞,∞] cos(x)/(xx-aa) dx = -(π/2a)sin(a)
森口・宇田川・一松「数学公式I」岩波全書221 (1956)
§56. (iii) p.25
872:132人目の素数さん
20/07/31 13:09:41.35 99rpQJqV.net
ここ�
873:ヘ分からない問題を書くスレです 答えがわかっている自作問題を投下するスレではありません
874:132人目の素数さん
20/07/31 13:57:20.28 RYjeKr5U.net
わかっていると思ってるだけかもよ
875:132人目の素数さん
20/07/31 15:22:28.26 ImynyFWQ.net
>>830
大先生の某芸人に分からない問題を書くスレでは?w
876:132人目の素数さん
20/07/31 15:25:02.56 ImynyFWQ.net
>>828
ジュース面の高さを与えたときの容量の厳密解は出せるけど、容量から高さを求めるのは俺にはできないな。
ニュートン・ラフソンで数値解しかだせない。
877:132人目の素数さん
20/07/31 16:58:31.79 uz0RwDNj.net
URLリンク(imgur.com)
わかるやつおる?
878:132人目の素数さん
20/07/31 17:56:08 bu3R0JSM.net
>>824
どなたかご教示ください。
まずは、正方形と3辺のいずれかが平行かどうかを確定させたいです。
879:132人目の素数さん
20/07/31 20:03:46.46 lUZmSg6J.net
>>829
F(a,b,c) = ∫[0,∞] e^{-(bi+c)x}/(xx-aa) dx,
a≠0, c>0,
とおく。
{-(∂/∂b)^2 - aa}F(b,c) = ∫[0,∞] e^{-(bi+c)x} dx
= [ (-1/(bi+c))e^{-(bi+c)x} ](x=0,∞)
= 1/(bi+c),
これより
F(a,b,c) = {iCi(a(b-ic))sin(a(b-ic)) -iSi(a(b-ic))cos(a(b-ic))
+ k2・sin(ab) + k1・cos(ab)}/a,
c→+0 として実部をとると
{k2・sin(ab) + k1・cos(ab)}/a,
ところで F(a,b,c) はaの偶函数だから
k・sin(ab)/a,
かな。
880:132人目の素数さん
20/07/31 20:06:29.31 UXtzViv1.net
ある1変数実数値関数f(x)がx=aで微分可能ならば、aとは異なるある実数bで、x=bでf(x)が微分可能であるものが存在することを示せ。
881:132人目の素数さん
20/07/31 20:18:56.28 lUZmSg6J.net
たとえば
f(x) = (x-a)^2・g(x)
g(x) = 1 (xが有理数のとき)
= -1 (xが無理数のとき)
882:132人目の素数さん
20/07/31 20:23:33.73 99rpQJqV.net
>>837
また自作問題か
いい加減間違った主張を肯定の形に書くのやめたら?
883:132人目の素数さん
20/07/31 20:25:14.24 UXtzViv1.net
>>838
この場合lim[x→a]はどうして定義できるのでしょうか。0の近傍で振動してしまいそうに見えるのですが…
884:132人目の素数さん
20/07/31 20:26:24.43 99rpQJqV.net
絶対値
885:132人目の素数さん
20/07/31 20:26:28.43 UXtzViv1.net
>>839
では質問の形で書かせていただきます。
ところで一点のみ微分可能な関数の例を先とは別の形でご教示ください。
886:132人目の素数さん
20/07/31 20:54:39 99rpQJqV.net
例えば、 g(x) をいたるところ連続でいたるところ微分不可能な関数とするとき、
f(x) := (x-a)g(x)
887:132人目の素数さん
20/07/31 21:29:54 lUZmSg6J.net
>>843
・ワイエルシュトラスの例 (1860ころ)
g(x) = Σ[n=0,∞] (c^n) cos(b^n・πx)
(ここで bは奇数, 0<c<1, bc>1+3π/2)
ハウスドルフ次元は 2 + ln(c)/ln(b).
・ダルブーの例 (1875)
g(x) = Σ[n=0,∞] (1/n!) sin((n+1)!・πx)
・ボルツァーノ(草稿)「関数についての研究」にもある。(1830)
数セミ増刊「100人の数学者」日本評論社 (1989)
p.128-129
888:132人目の素数さん
20/07/31 21:42:17 lUZmSg6J.net
>>798
それは
∫[-∞,∞] cos(ax)/(xx+1) dx (Laplace)
ぢゃね?
高木:「解析概論」改訂第三版, 岩波書店 (1961)
練習問題(5)-(9) p.264
練習問題(6)-(3) p.293
森口・宇田川・一松:「数学公式I」岩波全書221 (1956)
§56. (iii) p.255
§58. p.262
889:132人目の素数さん
20/07/31 22:01:28.80 0rqr1OWJ.net
文英堂これでわかる数学3のP205の
ーx(cosπ/4cosxーsinπ/4sinx)これが
√2xsinxになる過程がわからない
ヒントくれ・・・
890:132人目の素数さん
20/07/31 22:14:08.67 99rpQJqV.net
ならない
891:132人目の素数さん
20/07/31 22:16:49.91 n8pY37yk.net
・見づらい
・半角でおk
・括弧を使おう
892:132人目の素数さん
20/07/31 23:51:46 99rpQJqV.net
>>842
アンカーをつけてなかった
>>843はどう?
893:132人目の素数さん
20/08/01 01:01:09.56 HBToy2vT.net
ガロア理論
URLリンク(i.imgur.com)
894:
20/08/01 01:34:18.48 RuV6gm+X.net
前>>799
>>528ちゃんと途中過程を書いて解こうぜ。
答えが満杯で18.いくらになりそうなことはわかった。
9.5°ぐらいで半分こぼれるのもあってるだろう。
そうじゃないんだ。部分積分がしたいんだ。
895:132人目の素数さん
20/08/01 02:28:03.80 8FRQW1eF.net
-{cos(π/4) cos(x) - sin(π/4) sin(x)} = -cos(π/4 + x) = sin(x),
√2 は不要不急です。
896:132人目の素数さん
20/08/01 02:32:31 XkWSy5jj.net
>>852
> -cos(π/4 + x) = sin(x)
なんかおかしいと思わないのだろうか
897:132人目の素数さん
20/08/01 02:40:07 8FRQW1eF.net
>>850
B 第4問
pを奇素数とする。
また、複素数 ζ, α を ζ=exp(2π√(-1) /pp), α = p^(1/p)ζ と定める。
ただし p^(1/p) は実数体におけるpのp乗根を表わす。
(1) f(X)= Σ[i=0,p-1]X^(pi)が Q[X]の既約多項式であることを示せ。
(2) 拡大次数[Q(ζ,α):Q],[Q(α):Q]を求めよ。
(3) Q(α) が Q のガロア拡大であるかどうかを答えよ。
(4) 拡大 Q(ζ,α)/Q の中間体Fで[F:Q]= pp となるものの個数を求めよ。
898:132人目の素数さん
20/08/01 02:49:03 8FRQW1eF.net
>>852
なんかおかしい。
-cos(π/4 + x) = {-cos(π/2 +x) - cos(x)}/√2 = {sin(x)-cos(x)}/√2,
かな
899:132人目の素数さん
20/08/01 02:53:36 XkWSy5jj.net
>>846が成り立たないことはごちゃごちゃ計算するまでもなく明らかだけどな
x = π で成り立たないし
900:132人目の素数さん
20/08/01 06:18:00 WWZwr+lV.net
自作の問題は
センスを感じたり、興味深いものは許す。
それ以外は見ないふりしてNGに入れるから、そのつもりで。
「自作の問いは命を賭けて書き込め」 (ソクラテス随筆集)
901:132人目の素数さん
20/08/01 06:49:46 ZdQMyZ07.net
問題って作るの意外とムズいからな
テキトーに作ったらほとんどが無意味か解けないようなのになってしまう
考えて解ける丁度いい問題を生むにはセンスが必要
902:132人目の素数さん
20/08/01 07:01:46 A6ds3/SG.net
立体図形を上から見た図、前から見た図、横から見た図から決定せよっていう問題がよくあるけど
本当に一意に決まるのでしょうか?一意に決まるための一般的な定理があれば教えてください
903:132人目の素数さん
20/08/01 07:34:51 2TFdzAyg.net
>>851
∫[-1,1] pi*(pi-acos(h))^2 dh = 18.4399
の計算過程ってこと?
そもそも、その定積分でいいことは同意?
904:132人目の素数さん
20/08/01 07:40:48.31 2TFdzAyg.net
>>828
残ったジュースの高さをhとするとその体積は
π*( 2*π*√(1- (h-1)^2)-2*(√(1- (h-1)^2)+π* (h-1))*acos( (h-1))+(π^2-2)* (h-1)+ (h-1)*(acos( (h-1))^2) ) -2*π
までは計算でき�
905:スけど、この逆関数は作れないので数値解しかだせなかった。 エレガントに計算する方法があるかもしれん。
906:132人目の素数さん
20/08/01 07:43:44.65 2TFdzAyg.net
ワイングラスを傾ける問題では
αx + β + cos(x) = 0
α=tanθ
β=-π*tanθ+tanθasin(tanθ) + cos(asin(tanθ))
の解を数値解で求めるしかなかったので、厳密解は得られなかった。
907:132人目の素数さん
20/08/01 08:53:31 5QGl21dM.net
kを2以上の自然数とする。
数列{a[n]}はn=1,2,...に対し、
a[1]=1/{(2^k)+1}, a[n+1]=|2a[n]-1|
を満たす。
a[k]はnによらない数であることを示し、それをkで表せ。
908:132人目の素数さん
20/08/01 09:23:44.20 Pse/PGt7.net
正距円筒図法(URLリンク(ja.wikipedia.org)正距円筒図法)で書かれた世界地図(1)があります。
これを地球を横から見た図(2)に変換したい。
(1)の図の中心が(2)の図でも中心に来るようにします(もちろん片側半分しか見えません)。
(1)の図のある座標(x,y)は(2)の図上ではどういう座標にマッピングされますか?
座標は左下が原点(0,0)、右上が(1,1)とします。
909:132人目の素数さん
20/08/01 10:42:29 qORrAykd.net
>>824
プログラム組んで最大値をとなる図を描いてみた。
URLリンク(i.imgur.com)
stの最大値は数値解で
> sim(opt$par,print=T)
[1] 2.050347
910:132人目の素数さん
20/08/01 10:49:16 IwYTiS9+.net
>>863
任意の数列a[n]についてa[k]がnに依存しないのはあまりにも明らかであるが、いざ示せといわれるとどう書いたらいいものか。
f(x)=2x+1の値が n に依存しないことを示せと言われているようなものだからね。式中に全く登場しない文字に依存していないのは明らかとしか言いようがない。
a[k]がa[n]の誤植なのかとも思ったけれど、この問題のa[n]の値はnに依存しているし…
問題の不備ではないのかい?
911:132人目の素数さん
20/08/01 10:50:15 y7tMEoHp.net
>>859
一般には全然決まらないと思うが立方体を組み上げた図形みたいなのを考えてる?
>>863
a[k]はnによらない、って何かのギャグ?
912:132人目の素数さん
20/08/01 10:59:05.36 zemcdCHc.net
すいません
単に、a[k]をkで表せ、です
913:132人目の素数さん
20/08/01 11:02:13.87 XkWSy5jj.net
ID:zemcdCHc = ID:5QGl21dM = ID:UXtzViv1 か
自作問題を作るセンスがないな
914:132人目の素数さん
20/08/01 11:13:58.67 YJIJPqws.net
>>869
なかなか悪くない漸化式だと思いますがいかがでしょうか
915:132人目の素数さん
20/08/01 11:24:01 y7tMEoHp.net
a[k]=(2^(k-1)+1)/(2^k+1)
916:132人目の素数さん
20/08/01 11:26:56 XkWSy5jj.net
>>870
新しい質問をする前に >>842-843 の感想を教えてください
917:132人目の素数さん
20/08/01 11:31:22 y7tMEoHp.net
出したかったのはa[k+1]だった説
918:132人目の素数さん
20/08/01 11:32:36.96 qORrAykd.net
>>865
求められたのはsだったので
> sim(opt$par,print=T)
s = 1.684238 t = 1.217374 st = 2.050347
919:132人目の素数さん
20/08/01 14:04:22.05 ijBaMbzR.net
The Principle of Recursive Definitionって重要?
920:132人目の素数さん
20/08/01 14:31:05.64 2TFdzAyg.net
>>865
探索させる初期値を変化させたら、こんなのが探索されて
URLリンク(i.imgur.com)
こっちの方がstが大きかった。
s = 1.596771 t = 1.317438 st = 2.103647
これも最大値じゃなくて極大値の可能性があるなぁ。行き詰まってしまった。
921:132人目の素数さん
20/08/01 15:49:30.36 2TFdzAyg.net
>>876(自嘲自己レス)
正方形が重ならないというのを 一方の正方形の内部に他方の正方形の頂点が存在しない、というので判定していたら、
PCがこんな図を返してきた。PCの方が賢いなw
URLリンク(i.imgur.com)
922:132人目の素数さん
20/08/01 16:29:48.36 o//hKw/2.net
nを自然数とする。n次正方行列Cnをnを用いて以下のように定義するとき、
fn(x)=det(xE-Cn)として、fn(x)をn,xの式で表せ。(過程も示せ)
URLリンク(imgur.com)
n=1,2,3を代入してみたらどうもめっちゃ綺麗な形になるっぽいけどどう証明すればいいのかさっぱりピーマン訳わかめですわ
923:132人目の素数さん
20/08/01 16:57:19.39 ZdQMyZ07.net
>>878
帰納法
行列式の展開公式を使えば
f(n+1)(x)=xfn(x)+(n+2)
が示せるから
fn(x)=Σ(n+1-i)x^i
924:132人目の素数さん
20/08/01 17:42:38.33 o//hKw/2.net
>>879
はあはあ第n列に関する余因子展開ってことですね
それでなんで(n+2)についてる行列式が1になるって分かるんですか?
あと3行目右辺の各項の前に(-1)^(n-1)とかはいらないんですか?
めっちゃ簡単なこと聞いてたらすいません
925:132人目の素数さん
20/08/01 17:46:35.73 ZdQMyZ07.net
>>880
n+2のところに掛かる余因子は対角が-1の三角行列になってるから
そして、符号は丁度余因子展開の符号と打ち消す
926:132人目の素数さん
20/08/01 18:05:05.81 o//hKw/2.net
>>881
あー、三角行列の行列式はすべての対角成分の積になるんですね
それで符号が打ち消されると
でもxfn(x)の方は余因子展開のとき出てきた符号しか無くないですか?
何と打ち消しあうんですか?
927:132人目の素数さん
20/08/01 18:14:36 ZdQMyZ07.net
>>882
対角の位置にある余因子の係数は常に1だよ
(-1)^(i+j)においてi=jなわけだから
928:132人目の素数さん
20/08/01 18:25:04 o//hKw/2.net
>>883
!!!なるほど!
あとは自分で頑張ります!
ありがとうございました!
929:132人目の素数さん
20/08/01 18:39:09.21 2TFdzAyg.net
>>877
対角線の交点も内部にないという条件を追加してデバッグした結果。
URLリンク(i.imgur.com)
s = 2.169406 t = 1.243978 st = 2.698694
930:イナ
20/08/01 19:15:57.41 RuV6gm+X.net
前>>851
>>860
ぜんぜん違う。まずaなんかない。
数値はいい。途中過程、部分積分しないと。
931:132人目の素数さん
20/08/01 20:19:48.34 akw9FJQf.net
>>886
acosって逆余弦(cosの逆関数)アークコサイン
a * cosじゃないよ。
URLリンク(i.imgur.com)
932:132人目の素数さん
20/08/01 20:55:42 c8PANyZ+.net
L^1(R)内の関数列fn, gn, hnについてx→∞において
fn→f, gn→g, hn→h に殆んど至るところ収束して
fn ≦ gn ≦ hn かつ ∫ fn dx→∫ f dx, ∫ hn dx→∫ h dx が成立してるならば
∫ gn dx→∫ g dx は成立しますか?
933:132人目の素数さん
20/08/01 21:06:09.68 c8PANyZ+.net
>>888
失礼
x→∞ではなくn→∞の間違いです
934:132人目の素数さん
20/08/01 21:12:38.32 JxEzRwIM.net
>>824
これ難問ですか?
935:132人目の素数さん
20/08/01 22:13:34.37 XFQX9+V0.net
特殊解の間違いをご指摘ください
y'''(x) + 6y''(x) + 12y'(x) + 8y(x) = 5x^2e^(-2x)
D^3 + 6D^2 + 12D + 8 = (D+2)^3 = 0
D = -2(3重解)
よって余関数 Y は
Y = (C3x^2+C2x+C1)e^(-2x)
((D+2)^3)y = 5x^2e^(-2x)
e^(αx)/(D-α)^n = (x^n/n!)e^(αx)
を使うと特殊解は
y0 = 5x^2・e^(-2x)/(D+2)^3
= (5x^2)(x^3/3!)e^(-2x)
= (5x^3/6)e^(-2x)
ところが wolframa で計算すると
y0 = (5x^3/12)e^(-2x)
になります。
936:132人目の素数さん
20/08/01 2
937:2:16:49.96 ID:XFQX9+V0.net
938:イナ
20/08/01 22:39:09.97 RuV6gm+X.net
前>>886
>>887acosもarkcosもなしで。理論状逆関数になるアピールは要らない。
939:132人目の素数さん
20/08/01 22:46:00.42 sinUJZq7.net
箱舟なんや
940:イナ
20/08/01 22:49:39.28 RuV6gm+X.net
前>>893修正。
>>887acosもarkcosもなしで。理論上逆関数になるにしても。
941:132人目の素数さん
20/08/01 23:09:01.36 XkWSy5jj.net
>>891-892
実際に微分して確認してみればいいのでは?
942:132人目の素数さん
20/08/01 23:14:19.79 4imTgKhf.net
>>891
1/(D+2)^3 の演算子は 5x^2・ e^(-2x) 全体に掛かるのに
e^(-2x) にだけ掛けてしまっているのが間違い。
演算子法の復習:
URLリンク(www.tsuyama-ct.ac.jp) (誤植あるけど式を追えば分かる)
そこの公式(2) を使えば、
1/(D+a)ⁿ * x^a * e^{-ax}
= e^{-ax} * 1/Dⁿ * e^{ax} * x^a * e^{-ax} = e^{-ax} * 1/Dⁿ * x^a
= e^{-ax} * 1/{(a+1)(a+2)...(a+n)} * x^{a+n}
を得る。
特に n=3, a=2 と置いて (以下略)
943:132人目の素数さん
20/08/01 23:54:25.02 XkWSy5jj.net
>>897
へー演算子法ってのがあるのか、知らなかった
ヘヴィサイドすげーな
D 微分演算子 D = d/dx とし、 φ(t) を t の一変数多項式とするとき、
微分方程式
φ(D)y(x) = f(x) の特殊解は y(x) = (1/φ(D))f(x)
で求められるのか
さらに
(1/(D+a))f(x) = e^(-ax) ∫ f(x)e^(ax) dx
が成り立つから、これを使えば>>891の微分方程式の特殊解が得られると
>>891は a = 2 で f(x) = 5(x^2)e^(-2x) として
1/(D+2) を3回適用すればいいから、単に公式の適用ミスってことか
944:132人目の素数さん
20/08/02 04:22:03 IQYqaEij.net
ド素人です
矩形の描写角度を求めたく...
一変が20cmの正方形Aと10cmの正方形Bがそれぞれの1辺が接している場合、接していない辺の長さが5cmずつであれば、A及びBの中心点を結んだ角度が求められると思いますが、接していない辺が7cmと3cmの場合(接する面の中点軸が一致しない場合)、この正方形Aの傾き角度は求められるのでしょうか??
945:132人目の素数さん
20/08/02 05:25:23 sbj8a5TR.net
>>897
ありがとうございました。助かりました!
946:132人目の素数さん
20/08/02 06:12:24 Vu/4mdzK.net
>>900
おう、がんばれよ
947:132人目の素数さん
20/08/02 07:02:19.25 koevBDz6.net
>>899
作図しようと思ったけど文章の意味がわからんのでやめた。
図示してくれたら数値解なら出すけど。
948:132人目の素数さん
20/08/02 07:07:05.33 XOQINjwE.net
>>887
Arccos() が正しい。
一部のプログラム言語では (入力の負荷を減らすため)ACOS に変えたものの、紛らわしくなって逆効果だった、というお話。
なお毎日、昼飯前にアクセスが集中しだすとシステムエラーになる某NECの生産管理システムも ACOS だから、縁起の悪い名前ではある。
>>898
実用的には それでじゅうぶん。
理論付け(正当化・厳密化)は後からなされた。(ミクシンスキーら)
949:132人目の素数さん
20/08/02 07:22:20.75 XOQINjwE.net
入出力ゲートがパンクしてるのは誰が見ても明らかなのに
白ばっくれてもしょうがねぇ。
昼休みの時間をずらすとクラブの練習に差し障るしなぁ。
950:132人目の素数さん
20/08/02 08:51:02.99 pxJDvakc.net
>>903
カシオの計算サイトではacosと表示されているな。
URLリンク(keisan.casio.jp)
しかし、acosをa*cosと解釈する芸風はいつも楽しませてくれて、このスレの清涼剤w
951:132人目の素数さん
20/08/02 08:53:17.60 pxJDvakc.net
Wolfram先生はcos-1(x)と表示しているみたい。
URLリンク(ja.wolframalpha.com)
952:132人目の素数さん
20/08/02 09:32:07.87 spLSyxtT.net
cos⁻¹(x) = arccos(x) は 1/cos(x) みたいに見えてしまうのがなあ...
それでいで cos²(x) は cos( cos(x) ) ではなくて、{ cos(x) }² になるとか統一感がないよね。
953:132人目の素数さん
20/08/02 10:29:27.16 FKli2Ke6.net
f(x)は(-∞,∞)で無限回微分可能な実数値関数で、任意の自然数nに対しf(n)=n!となる。
このようなf(x)の例を2つ挙げよ。
954:132人目の素数さん
20/08/02 10:56:41.59 JVL75ayo.net
x≧0のところではf(x)=Γ(x+1)として
負のところはe^(-1/x^2)使って適当に無限回微分可能な関数とつなげばいいんじゃないのか
955:132人目の素数さん
20/08/02 11:21:47.19 pxJDvakc.net
>>907
同意。
Wolframの出力はそれで混乱することがある。
956:132人目の素数さん
20/08/02 12:57:36.70 IQYqaEij.net
899の者です。
>>902
図を起こしてみました。
知りたいのは正方形Aが何度の傾きを持っているか...です。
URLリンク(i.imgur.com)
957:132人目の素数さん
20/08/02 13:05:26.66 pZrumlP0.net
>>911
その角度は2つの正方形をまとめて回転させればいくらでも変化するんじゃないの?
958:132人目の素数さん
20/08/02 13:48:00 pxJDvakc.net
>>911
角QPRなら atan(2/15)=0.1325515ラジアン=7.594643°
URLリンク(i.imgur.com)
959:132人目の素数さん
20/08/02 13:51:21 pxJDvakc.net
>>911
この図でいうと、
URLリンク(i.imgur.com)
B,Fをx軸上において、Aを軸上に置くという条件が加わるという意味でしょうか?
960:132人目の素数さん
20/08/02 14:10:11 IQYqaEij.net
>>912
そのとおりです。
正方形AおよびBの接する辺位置は変わらず、この2つの正方形が正方形Aの中心点を基準に
任意の角度で回転する場合、正方形A,Bの中心座標がわかっているのであれば回転角度を
算出できないか?が知りたいことなのです。
>>914
点B,Fは同一のX軸上とは限らない前提です。
気づいたのですが、正方形Aの中心点と、辺B,Cの中点を結んだ補助線を描き
水平から何度の傾き角度が得られるかで充足できるかもしれません。
この角度を求めるにはどのような式が有用なのでしょう。。。
961:132人目の素数さん
20/08/02 14:14:37 pxJDvakc.net
>>914
それならば角BFEなので
> atan(3/10)
[1] 0.2914568 ラジアン
> atan(3/10)*180/pi
[1] 16.69924 °
962:132人目の素数さん
20/08/02 14:23:05 1oXlXKHa.net
△ABCの外部に3つの正三角形△PBC,△QCA,△RABをとる(いずれの三角形も△ABC内部の領域と共通部分を持たない)。
△ABCの形状が色々変化するとき、以下のrの取りうる値の範囲を求めよ。
r = {max(AP,BQ,CR)}/(AB+BC+CA)
963:132人目の素数さん
20/08/02 14:35:49 pxJDvakc.net
>>915
この図で
URLリンク(i.imgur.com)
P,Q,Q2の座標がわかったときの角Q2-P-Qが必要な角度ですか??
964:132人目の素数さん
20/08/02 15:07:45.78 IQYqaEij.net
>>916
おお、アークタンジェントを使うとよいのですね!
ありがとうございます。
先が見えました!助かりました。
965:132人目の素数さん
20/08/02 15:16:59.76 pxJDvakc.net
URLリンク(i.imgur.com)
座標が
P : (p1,p2)
Q : (q1,q2)
Q2 : (r1,r2)
とすると
角Q2-P-Q = atan((r2-p2)/(r1
966:-p1)) - atan((q2-p2)/(q1-p1) atanはtanの逆関数
967:132人目の素数さん
20/08/02 15:27:52.36 pxJDvakc.net
>>919
座標から角度を出すには、ベクトルの内積をつかってacosを使ってだす方法もあり。
968:132人目の素数さん
20/08/02 15:53:39.48 IQYqaEij.net
>>pxJDvakc 様
お付き合いありがとうございました。
矩形の回転角度を求めるにあたってノーヒント(というか私が無学)だったため
大変助かりました!
969:132人目の素数さん
20/08/02 15:54:09.07 XOQINjwE.net
>>885
図から
AB=4, BC=5, CA=6, S=(15/4)√7,
頂点Cから底辺ABに下ろした垂線CHの長さをhとおくと
h = 2S/(AB) = (15/8)√7 = 4.960783708
縦横比から
4:s:t = h:(h-s):(h-s-t)
これで計算すると
s = 4h/(4+h) = 2.2144418924791
t = ss/4 = 1.22593822379161
s・t = (1/4)s^3 = 2.71476896035556
となった。
(これが最大かどうか分からない問題)
970:132人目の素数さん
20/08/02 16:55:49.14 pxJDvakc.net
>>917
題意を満たす作図をするプログラムを作ってみた。
URLリンク(i.imgur.com)
971:132人目の素数さん
20/08/02 17:05:40.74 pxJDvakc.net
>>924
んで、1万回シミュレーションしてrの値を吐かせてみた結果
> re=replicate(1e4,art(F))
> range(re)
[1] 0.4340035 0.5773468
972:132人目の素数さん
20/08/02 17:45:51.48 pxJDvakc.net
>>924(動作確認)
URLリンク(i.imgur.com)
とりあえず、おかしな出力はないもよう。
973:132人目の素数さん
20/08/02 21:30:44.28 XOQINjwE.net
>>917
AP^2 = BQ^2 = CR^2
= RR {3 - cos(2α) - cos(2β) - cos(2γ) + (√3)[sin(2α) + sin(2β) + sin(2γ)]}
= 4RR(1 + cosα cosβ cosγ + (√3)sinα sinβ sinγ)
= 4RR(1 + cosα cosβ cosγ) + 2(√3)S
ここで S = abc/4R = 2RR sinα sinβ sinγ. (正弦定理)
(AB + BC + CA)^2 = 4RR (sinα + sinβ + sinγ)^2
= 8RR(1+cosα)(1+cosβ)(1+cosγ),
974:132人目の素数さん
20/08/02 23:41:12.27 XOQINjwE.net
β=γ = (180° - α)/2 の二等辺Δ では
AP = R{1+cosα +(√3)sinα},
BC+CA + AB = 2R{sinα + 2cos(α/2)},
α = β = γ =60° (正△) のとき
最大値 r(60°) = (√3)/3 = 0.5773502692
α ≒ 180°, β = γ ≒ 0 のとき
下限値 r(180°) = (√3)/4 = 0.4330127019
>>925 にほぼ一致
975:132人目の素数さん
20/08/02 23:55:24.50 pxJDvakc.net
ワイングラスの形状が円錐面とする。
グラス底での角度2θは120°する。(θ=60°)
URLリンク(i.imgur.com)
これを傾けて満杯のワインを半分にするには何度傾ければよいか?
URLリンク(i.imgur.com)
角度θで一般解を出そうかと思ったが、自分の能力では数値解しかだせなかった。
976:
20/08/03 00:19:57.99 UJTQm+OV.net
前>>895
>>528数値解じゃなく計算過程が知りたい。
部分積分だと思うけどarkcosを使う必要があるならなぜ必要か示さないといけない。