20/07/14 18:27:55.90 /1BaD2x6.net
>>168
cos120°=-√3/2 とは、さすがはイナ
>>166(1)
内積最小となるのが対称性からAB=ACのときであることを認めるのなら
∠AOB=∠AOC=θとおいて
↑AB・↑AC=↑OB・↑OC-↑OA・↑OB-↑OA・↑OC+|↑OA|^2
=cos(360°-2θ)-cosθ-cosθ+1
=cos(2θ)-2cosθ+1
=2(cosθ)^2-2cosθ
=2{cosθ-(1/2)}-(1/2)
cosθ=1/2 すなわち θ=60°のとき最小値-1/2。このとき∠BAC=120°