20/10/30 17:22:53.69 ANa+nMVb.net
>>629 追加
> 6.つまりは、p > 5で a^p+b^p=c^p→ 楕円曲線 y2=x(x-a^p)(x+b^p) →谷山・志村予想(モジュラリティ定理(q展開))+ε予想→フェルマーの最終定理解決
> という流れだったのです
(>>363より再録)
URLリンク(www.math.kyoto-u.ac.jp)
整数論の最前線
楕円曲線の数論幾何
フェルマーの最終定理,谷山-志村予想,佐藤-テイト予想,そして・・・
伊藤 哲史 京都大学理学部数学教室 ガロア祭 2007年5月25日
(抜粋)
楕円曲線とは,3次式
y2 = x3 + ax + b (4a3 + 27b2 ≠ 0)
で定義された曲線のこと
モーデルの定理 (モーデル・ヴェイユの定理)
E : y2 = x3 + ax + bを楕円曲線とする.
このとき,有限個の有理点P1, P2, . . . , Pnが存在して,
Eの全ての有理点をP1, P2, . . . , Pnから作ることができる.
P1, P2, . . . , Pn を生成系という.
Q1, Q2, . . . , Qr から,ねじれ点以外の有理点を全て作ることが
できるようなrの最小値を,Eの階数という.
谷山-志村予想 (谷山豊, 1950年代)
E : y2 = x3 + ax + bを楕円曲線とすると,
重さ2の保型形式 f(q) = Σn=1~∞ bn q^n *)
が存在して,
ほとんどすべてのpに対して,ap(E) = bpが成り立つ
(引用者注:*) q展開)
リベット :
谷山-志村予想が正しければ,フェルマーの最終定理も正しい.
ここまでのまとめ :
・楕円曲線E : y2 = x3 + ax + bの有理点は,有限個かもしれないし,無限個かもしれない.
・有限個の有理点P1, . . . , Pnをうまく選べば,Eの有理点を全て作ることができる.(モーデルの定理)
・ap(E) = p -(y2 - (x3 + ax + b)がpで割り切れる(x, y)の個数)とおくと,-2√p ≦ ap(E) ≦ 2√p.(ハッセの定理)
・ap(E)は重さ2の保型形式のFourier係数と一致する.(谷山-志村予想)
(引用終り)
以上