20/10/29 15:36:36.46 cmDP4Gws.net
>>624 追加
<再録>
(参考)
URLリンク(www.kurims.kyoto-u.ac.jp)
数理解析研究所講究録 1996
楕円曲線の数論の歴史 早稲田 足立恒雄
ここでは (1) $\Gamma^{l}\mathrm{e}1^{\cdot}1\mathrm{I}1_{\mathrm{C}}’\iota \mathrm{t}$ の先駆
的研究、 (2) 楕円曲線の群構造発見を巡る歴史、 (.3) フェルマー問題の Frey による谷山
予想への還元、 の三つに絞って考察することにする。
\S 2 楕円曲線論の始祖 Fermat
(引用終り)
(全部、上記 足立恒雄先生に書いてあるが)
1.昔昔あるところで、楕円曲線論の始祖 Fermat氏が、楕円曲線の面白い性質を発見して、数論研究を行った
2.その後、”群構造の発見 種数 1 の曲線と楕円関数との関係に初めて気が付いたのは Jacobi氏”だった
3.時代は下って、谷山・志村氏は、いまでいうモジュラリティ定理(q展開)を予想として発表した
4.Frey氏の貢献、楕円曲線 y2=x(x-a^p)(x+b^p) ヘレゴーチ・フライ曲線を研究し、谷山・志村予想+ε予想が、フェルマーの最終定理の反例となることを発表
5.ワイルズ氏が、谷山・志村予想の半安定の場合を解決し、フェルマーの最終定理を証明した
6.つまりは、p > 5で a^p+b^p=c^p→ 楕円曲線 y2=x(x-a^p)(x+b^p) →谷山・志村予想(モジュラリティ定理(q展開))+ε予想→フェルマーの最終定理解決
という流れだったのです
(参考)
URLリンク(ja.wikipedia.org)
楕円曲線
(抜粋)
フェルマーの最終定理(FLT)の証明である。素数 p > 5 に対して、フェルマー方程式
a^p+b^p=c^p で
楕円曲線 y2=x(x-a^p)(x+b^p) ヘレゴーチ・フライ曲線(Hellegouarch?Frey curves)
(引用終り)
704:現代数学の系譜 雑談
20/10/29 15:58:46.16 cmDP4Gws.net
>>628 追加
> 6.つまりは、p > 5で a^p+b^p=c^p→ 楕円曲線 y2=x(x-a^p)(x+b^p) →谷山・志村予想(モジュラリティ定理(q展開))+ε予想→フェルマーの最終定理解決
> という流れだったのです
1.これを、IUTについて見るに
p = 1で a + b = c → 楕円曲線 y2=x(x-a)(x+b) →谷山・志村予想(モジュラリティ定理(q展開))+ε'予想→スピロ予想解決
となる。そういう流れではないかと(^^
2.で、”ε'予想=IUT1~4” なのです
3.要は、”p = 1で a + b = c”だけを眺めても、なかなか先が見えない
同様に、”楕円曲線 y2=x(x-a)(x+b)”だけを 眺めても、なかなか先が見えない
そこで、望月先生は、”谷山・志村予想(モジュラリティ定理(q展開))+IUT1~4”という視点で、解決しようとしたのではないかと
「ε'予想=IUT1~4」の前に、膨大な準備論文があると聞いていますが
4.私のこと? 私は、細かいことはさっぱりです。ミーハーのヤジウマですから
>>590 PROMENADE IN IUTなどが進むと、また何か解説の情報が入ってくるのではと、期待して待っています(^^
IUTの原論文など、難しすぎ
私には、とても、とても。まともには 読めませんよ。斜めからか、裏からか、後ろからかですなw(^^;
5.まあ、競馬の三冠馬同様です
「出遅れていた望月号、さあ、第四コーナーを回って、直線に入ってきた。懸命の追い込みだ。2022 モスクワICMのゴールを目指せ~!」
ですよ(^^
(参考)
URLリンク(ja.wikipedia.org)
スピロ予想
(抜粋)
言明
任意の ε > 0 に対し、定数 C (ε) が存在して、有理数体 Q 上定義された全ての楕円曲線 E に対して、E の極小判別式を Δ で、導手を f で表すと、
|Δ|<=C (ε) ・f^(6+ε)
が成り立つ。
以上は有理数体における主張であるが、一般の代数体Ver.や関数体Ver.もある。関数体Ver.は、Szpiro の定式化のずっと以前に小平邦彦によって発見されており、その証明は易しい[1]。
ABC予想との関係
スピロ予想より強い以下の主張がABC予想と同値である[2]。
略
(引用終り)
以上
705:132人目の素数さん
20/10/29 19:21:56.32 ZX9ptk7R.net
>>625
>”「同じと見なす」ことの素晴らしさと難しさ”
>”数学の専門の言葉では「同一視」という”
>>626
>違いを探せば、違いはある。でも、同一視する。それが、高等数学の流儀
>あるときは同一視し、あるときは差を強調する
>適切に自由自在に、同一視と、差を強調するときと、
>その使い分けができるのが良いのだろうね
で、いつどこでだれが
「1つの楕円曲線が1つの楕円関数と同一視できる」
という🐎🦌な誤りを口にしたのかな?
706:現代数学の系譜 雑談
20/10/29 20:54:12.09 bN6CRDXK.net
>>630
おれだよ、おれ(^^
707:現代数学の系譜 雑談
20/10/29 21:19:58.88 bN6CRDXK.net
ほいよ
URLリンク(mathematics-pdf.com)
谷山・志村予想について よしいず MATHEMATICS.PDF
(抜粋)
谷山・志村予想とは
「有理数体上の楕円曲線(注1)はモジュラー関数(modular function)で一意化(uniformization)される」という命題が,谷山・志村予想と呼ばれているものです.このような形で明確に定式化したのは志村五郎です([11], p. 245).
円の方程式 x2+y2=1 は x=cos t, y=sin t とパラメータ表示され,tを実数の範囲で動かすと円上のすべての点が得られますが,このことを円が三角関数で一意化されるといいます.楕円曲線とモジュラー関数についても同様のことが成り立つというのが上の命題の意味です.
古典的な結果としてすでに,楕円曲線がワイエルシュトラスのペー関数と呼ばれる楕円関数によって一意化されることが知られています.谷山・志村予想によれば,楕円関数の代わりにモジュラー関数が利用できるというわけです.モジュラー関数のような「良い性質」を持つ関数で一意化できると,楕円関数ではできなかったいろいろなことが証明できます.
予想に谷山の名前が付いているのは,1955年に日光で行われた代数的整数論の国際シンポジウムにおいて谷山豊が楕円曲線と保型形式(automorphic form)との関連について問題の形で言明したことによります.ただし,谷山自身はモジュラー関数だけでは不十分だろうと思っていたようです([5], pp. 188-189, [11], pp. 248-251).
数学者サージ・ラングが,この予想に関するヴェイユの発言を徹底的に調べ上げ,その調査結果を「ラング・ファイル」あるいは「谷山・志村ファイル」と呼ばれる文書にまとめたという話は有名です([5],pp. 188-191, [8], pp. 137-157).彼は,ヴェイユが当初予想が成り立つことを信じてはおらず,この予想の成立にはなんの貢献もしていなかったと断定しました.
モジュラー関数や保型形式の定義については,岩波数学辞典第4版を参照してください.ここでは,モジュラー関数,モジュラー形式はそれぞれ保型関数,保型形式の特別なものであるということだけ注意しておきます.
(引用終り)
以上
708:現代数学の系譜 雑談
20/10/29 21:32:53.73 bN6CRDXK.net
>>628 追加
ご参考
URLリンク(www.kurims.kyoto-u.ac.jp)
平成19年度(第29回)数学入門公開講座テキスト(京都大学数理解析研究所)
R = T 定理の仕組みとその応用 安田 正大
この講座では, Fermat 予想の証明のために Wiles, Taylor-Wiles が確立した R = T 定理に関する最近の発展と応用についてお話します.
ここで考えている反例 a^l + b^l = c^l において, 条件 a, b, c の最大公約数が 1 であり, さらに a + 1 が 4
の倍数で b が偶数であると仮定しても一般性を失わないのでそう仮定することにします. このとき楕円曲
線 Ea,b が存在するとすると, 非常におかしなことが起こるということに Frey は気づきました. 一般に有理
数体上の楕円曲線 E が与えられると, E の極小判別式と呼ばれる整数 ?E と E の導手と呼ばれる正の整
数 NE とが定まります. E の導手のほうが E の極小判別式の絶対値よりも小さいのですが, E = Ea,b に
関しては NE が ?E と比べて極端に小さくなります. ところが Szpiro の予想1という予想があって, E の
導手が E の極小判別式と比べて極端に小さくなることはないと思われているので Ea,b が存在するとする
とおかしなことになります.
Fermat 予想は, なぜ式 (1.1) に注目しているのかいまひとつはっきりせず, そういう意味で最近の数学
の立場からはそれほど重要な問題であると思われていないのですが, Szpiro 予想に出てくる ?E と NE と
はともに重要な量であり, そのためこの 2 つの量を比較する Szpiro 予想は重要な問題だと思われます.
16. R = T
Mazur は R を考えるアイデアを創始し, いろんなアプローチによる R の研究方法を提唱しました. その
うちの一つとして, 上の設定とは少し異なるモジュライ問題の下で, 写像 R → T を考え, それが同型である
ことを肥田の変形というものを用いて示しました. Wiles [W] と Taylor-Wiles [TW] は, 上に設定したよう
な状況の下での同型 R → T の証明の基本戦略を開発し, それを用いて特別な場合の谷山-志村予想を解決し
ました.
(引用終り)
以上
709:132人目の素数さん
20/10/30 05:21:46.84 iuPqYV+w.net
>>632
>ほいよ
きみ、ペー関数で検索した?してないだろ
ヴァイエルシュトラスの楕円函数
URLリンク(ja.wikipedia.org)
ヴァイエルシュトラスの楕円函数は、
近しい関係にある三種類の方法で定義することができて、
それぞれ一長一短がある。
一つは、複素変数 z と複素数平面上の格子 Λ の函数として、
いま一つは z と格子の二つの生成元(周期対)を与える複素数 ω1, ω2 を用いて述べるもの、
残る一つは z と上半平面における母数 (modulus) τ に関するものである。
最後のはその前のと、上半平面上の周期対を選んで
τ = ω2/ω1 とした関係にある。
この方法では、z を止めて、τ の函数と見ると、
ヴァイエルシュトラス楕円函数は τ のモジュラー函数になる。
------------------------------------
つまり楕円曲線と対応づけられるのはτ
ついでにいうと、モジュラー群で写りあうτ同士は同じ曲線を表す
710:132人目の素数さん
20/10/30 05:51:39.56 iuPqYV+w.net
>>634
>ついでにいうと、モジュラー群で写りあうτ同士は同じ曲線を表す
URLリンク(kansaimath.tenasaku.com)
711:現代数学の系譜 雑談
20/10/30 07:58:16.03 cxWP738x.net
>>634
ご苦労さん
日本語wikipediaを調べたら、数学では左の言語のリンクから英文サイトに飛んで、チェックしておくのが定跡ですよ
それが下記だな。クロームなどでは、機械翻訳が出る(大概ひどい訳だが、下記はまし)
英 ワイエルシュトラスの楕円関数より
<google英訳>
”これらを使用して、複素数の楕円曲線をパラメーター化し、複素トーラスとの同等性を確立できます”
とありますが、何か?w(^^
URLリンク(en.wikipedia.org)
Weierstrass's elliptic functions
(抜粋)
In mathematics, Weierstrass's elliptic functions are elliptic functions that take a particularly simple form; they are named for Karl Weierstrass. This class of functions are also referred to as p-functions and generally written using the symbol p (a calligraphic lowercase p). The p functions constitute branched double coverings of the Riemann sphere by the torus, ramified at four points. They can be used to parametrize elliptic curves over the complex numbers, thus establishing an equivalence to complex tori. Genus one solutions of differential equations can be written in terms of Weierstrass elliptic functions. Notably, the simplest periodic solutions of the Korteweg?de Vries equation are often written in terms of Weierstrass p-functions.
<google英訳>
ワイエルシュトラスの楕円関数である楕円関数特に単純な形をとります。それらはカールワイエルシュトラスにちなんで名付けられました。このクラスの関数はp関数とも呼ばれ、一般に記号p(カリグラフィの小文字のp)を使用して記述されます。p関数は、トーラスによるリーマン球の分岐した二重被覆を構成し、4点で分岐します。これらを使用して、複素数の楕円曲線をパラメーター化し、複素トーラスとの同等性を確立できます。の属1ソリューション微分方程式は、ワイエルシュトラスの楕円関数で書くことができます。特に、Korteweg?de Vries方程式の最も単純な周期解は、Weierstrassのp関数で記述されることがよくあります。
712:現代数学の系譜 雑談
20/10/30 17:22:53.69 ANa+nMVb.net
>>629 追加
> 6.つまりは、p > 5で a^p+b^p=c^p→ 楕円曲線 y2=x(x-a^p)(x+b^p) →谷山・志村予想(モジュラリティ定理(q展開))+ε予想→フェルマーの最終定理解決
> という流れだったのです
(>>363より再録)
URLリンク(www.math.kyoto-u.ac.jp)
整数論の最前線
楕円曲線の数論幾何
フェルマーの最終定理,谷山-志村予想,佐藤-テイト予想,そして・・・
伊藤 哲史 京都大学理学部数学教室 ガロア祭 2007年5月25日
(抜粋)
楕円曲線とは,3次式
y2 = x3 + ax + b (4a3 + 27b2 ≠ 0)
で定義された曲線のこと
モーデルの定理 (モーデル・ヴェイユの定理)
E : y2 = x3 + ax + bを楕円曲線とする.
このとき,有限個の有理点P1, P2, . . . , Pnが存在して,
Eの全ての有理点をP1, P2, . . . , Pnから作ることができる.
P1, P2, . . . , Pn を生成系という.
Q1, Q2, . . . , Qr から,ねじれ点以外の有理点を全て作ることが
できるようなrの最小値を,Eの階数という.
谷山-志村予想 (谷山豊, 1950年代)
E : y2 = x3 + ax + bを楕円曲線とすると,
重さ2の保型形式 f(q) = Σn=1~∞ bn q^n *)
が存在して,
ほとんどすべてのpに対して,ap(E) = bpが成り立つ
(引用者注:*) q展開)
リベット :
谷山-志村予想が正しければ,フェルマーの最終定理も正しい.
ここまでのまとめ :
・楕円曲線E : y2 = x3 + ax + bの有理点は,有限個かもしれないし,無限個かもしれない.
・有限個の有理点P1, . . . , Pnをうまく選べば,Eの有理点を全て作ることができる.(モーデルの定理)
・ap(E) = p -(y2 - (x3 + ax + b)がpで割り切れる(x, y)の個数)とおくと,-2√p ≦ ap(E) ≦ 2√p.(ハッセの定理)
・ap(E)は重さ2の保型形式のFourier係数と一致する.(谷山-志村予想)
(引用終り)
以上
713:現代数学の系譜 雑談
20/10/30 18:17:27.89 ANa+nMVb.net
>>629 参考追加
> 1.これを、IUTについて見るに
> p = 1で a + b = c → 楕円曲線 y2=x(x-a)(x+b) →谷山・志村予想(モジュラリティ定理(q展開))+ε'予想→スピロ予想解決
> となる。そういう流れではないかと(^^
> 2.で、”ε'予想=IUT1~4” なのです
”q(=e^2πiτv)展開”は、IUTの論文内部では、”q-parameter” 又は、”q パラメータ” と称するようですね(下記)(^^
(参考)
URLリンク(www.kurims.kyoto-u.ac.jp)
The Mathematics of Mutually Alien Copies: from Gaussian Integrals to Inter-universal Teichmuller Theory. PDF NEW !! (2020-04-04)
P3
“elliptic curve” whose q-parameters are the N-th powers “q^N ” of the
q-parameters “q” of the given elliptic curve is roughly equal to the height of the
given elliptic curve, i.e., that, at least from the point of view of [global] heights,
q^N “≒” q
[cf. §2.3, §2.4].
URLリンク(repository.kulib.kyoto-u.ac.jp)
星裕一の論文 宇宙際 Teichmuller 理論入門 PDF (2019)
P81
(b) 楕円曲線の q パラメータの (1 より大きい) ある有理数による巾
P92
Ev の q パラメータ (良い還元を持つ有限素点や無限素点では 1) とし
ます. すると, この q パラメータの集まり
略
は F 上の数論的直線束
略
を定める (つまり, L は “qE^-1 から定まる数論的因子に付随する数論的直線束”)
URLリンク(www.kurims.kyoto-u.ac.jp)
山下剛サーベイA proof of the abc conjecture after Mochizuki.preprint. Go Yamashita last updated on 8/July/2019
P27
(4) l is a prime number l ≧ 5 such that l is prime
略
the q-parameters of EF
P39
where E has bad reduction with q-parameter qE,v
略
where qE,v = e^2πiτv and τv is in the upper half plane.
(引用終り)
以上
714:132人目の素数さん
20/10/30 19:53:06.70 iuPqYV+w.net
>>636
>複素数の楕円曲線をパラメーター化し、複素トーラスとの同等性を確立できます
まったく理解できてないでしょ
だから、>>609で
>スピロ予想の楕円関数は、モジュラーとして扱う。
なって🐎🦌な間違い発言するんだよ
任意の楕円曲線が任意の楕円関数と一対一対応するとか
わけもわからずウソ800並べるなって
715:132人目の素数さん
20/10/30 20:01:02.51 iuPqYV+w.net
>>637
>谷山-志村予想 (谷山豊, 1950年代)
>E : y2 = x3 + ax + bを楕円曲線とすると,
>重さ2の保型形式 f(q) = Σn=1~∞ bn q^n
>が存在して,
>ほとんどすべてのpに対して,ap(E) = bpが成り立つ
自分がまったく理解できないことコピペしても
心はうつろなままで全く満たされないよ
716:現代数学の系譜 雑談
20/10/30 20:58:15.22 cxWP738x.net
>>639-640
維新さん、いやさおサルさん(^^
必死の(非数学的な)ディスりで笑えます(^^;
717:132人目の素数さん
20/10/30 21:10:30.52 iuPqYV+w.net
>>641
泣くなよ 素人工学屋君
徳川慶喜も将軍やめたけど、
殺されもせず華族にも取り立てられて
長生きしたからいいじゃないか
718:現代数学の系譜 雑談
20/10/30 21:24:07.82 cxWP738x.net
>>639-640
維新さん、いやさおサルさん(^^
あなた、IUTは成立しないとか言っているよね
それなら、本当は、IUTを数学的に論じるべきだよね
でも、そういうこと、全くできないじゃん、あなたにはねw
数学的能力ゼロ
719:現代数学の系譜 雑談
20/10/30 23:10:42.06 cxWP738x.net
>>633
>R = T 定理の仕組みとその応用 安田 正大
これ
安田 正大=下記の”(xxxi) Seidai Yasuda, Osaka University, Japan;”先生
ですね
URLリンク(www.kurims.kyoto-u.ac.jp)
PROMENADE IN INTER-UNIVERSAL TEICHMULLER THEORY - 復元
Online Seminar - Algebraic & Arithmetic Geometry
Laboratoire Paul Painleve - Universite de Lille, France
P23
LIST OF PARTICIPANTS (36).
(xxxi) Seidai Yasuda, Osaka University, Japan;
URLリンク(repository.kulib.kyoto-u.ac.jp)
星裕一の論文 宇宙際 Teichmuller 理論入門 PDF (2019)
P180
謝辞
本稿に対していくつもの有益な
指摘をくださった安田正大先生と査読者の方に感謝申し上げます.
720:132人目の素数さん
20/10/31 07:05:53.80 CLm9DCft.net
維新でも革命でもないけど
>>643
>あなた、IUTは成立しないとか言っているよね
誰もそんなこといってないよな
IUTの正当性が確立されてない、とは言ってるけど
デュピュイも、ショルツの”いいがかり”は独断にすぎる、とはいってるけど
別に望月の証明が理解できたわけでもない
「望月。何言ってんのかわかんね」という点では、
ショルツもデュピュイも同じだな
ただ”望月予想”に関してショルツは懐疑的で、
デュピュイは前向きだっていうだけのこと
2012年に論文が発表されてからもう8年
望月のアイデア自体は
「面白いけど、今のところは間違ってすらいない」
って感じだな
721:132人目の素数さん
20/10/31 07:12:34.36 CLm9DCft.net
つーかさ、◆yH25M02vWFhPは
愛国精神かなんか知らんけど
「望月はIUTでABC予想を解決した世界一の数学者ァァァァァ!」
と絶叫してるんだろ?
だったら、あんたこそ数学としてIUTを数学的に論じなよ
でも、あんた、ただコピペしてるだけじゃん
ぶっちゃけタイヒミュラー理論どころか、
そもそも代数曲線も楕円関数もモジュラー関数も
全然わかってないんじゃね?
いや、わかってなくてもいいよ
工学部ではどれ一つ教えないからね 必要ないし
だったら、日本自慢したいだけで、数学に首つっこむのやめたら?
ネトウヨが馬鹿にされるのって、そういうとこなんだよな
右翼っていうより、只の幼稚なジコチュウ そう思わね?
722:現代数学の系譜 雑談
20/10/31 07:19:44.36 YFnoOBTS.net
>>645
>IUTの正当性が確立されてない、とは言ってるけど
別スレでも書いたけど
数学で本当にその理論が確立されたと言えるためには
IUT理論を使う、ある程度の専門家集団が形成されて
専門家集団の中で、IUTが使われる、その過程でしか、
真の正当性の確立はできない、そう思っている
論文の査読終了は、その一過程でしかない
そしていま、IUTの専門家集団が、形成されつつある
それが、>>644より再録の下記
URLリンク(www.kurims.kyoto-u.ac.jp)
PROMENADE IN INTER-UNIVERSAL TEICHMULLER THEORY - 復元
Online Seminar - Algebraic & Arithmetic Geometry
Laboratoire Paul Painleve - Universite de Lille, France
PROMENADE IN IUT
このオンライン セミナーの中で、IUTの理論が解説されて
さらにその発展までが論じられる予定だ
その過程で、IUTの正当性の検証がなされる
だが、それで終りではない
検証は、ずっと続いていくもの
来年は、国際会議の予定もあるしね
723:現代数学の系譜 雑談
20/10/31 07:32:46.26 YFnoOBTS.net
>>646
>日本自慢
お言葉ですがww
1.望月IUTは、やはり高木貞治からの歴史ある日本数論の系譜です
高木貞治が出て、日本の数論の人材は厚みがある
その中での望月IUTだと思う
2.その流れでの、京大の伊原スクール
伊原スクールで、望月、玉川、中村博明先生の3人が、グロタンディーク予想を解決した
その発展形が、望月IUTでしょ
3.そして、望月IUTの解説でも、小平スペンサー射が出てくる
小平スペンサー射の数論版が、
望月IUTですね
4.さらに、岩澤理論の影響も
谷山志村予想の解決に、ワイルズ先生は岩澤理論を使ったという
望月IUTで使われる ”q パラメータ” (=”q(=e^2πiτv)展開”(>>638))にも
ここに、日本人が大きく貢献している
これらは
やっぱり日本人として、
誇りに思っていいと思いますよ(^^
724:132人目の素数さん
20/10/31 08:12:35.36 CLm9DCft.net
やべぇ
ネトウヨのジコチュウ精神に火つけちまったかwww
>1.望月IUTは、やはり高木貞治からの歴史ある日本数論の系譜です
なんだそれ?w
別に数論は高木貞治が創始したわけじゃないだろ
高木貞治が留学したのはドイツ
今の数論の源流をたどればガウスにまでさかのぼる
世界に冠たるドイツぅぅぅぅぅw
URLリンク(www.youtube.com)
>2.その流れでの、京大の伊原スクール
> 伊原スクールで、望月、玉川、中村博明先生の3人が、
> グロタンディーク予想を解決した
グロタンディークって日本人か? 京大出身か?w
そもそも父親はロシア生まれのユダヤ人だろ
(グロタンディークはオランダ系ドイツ人の母親の姓)
あ、そういや、望月も半分ユダヤ系だよな
ユダヤ人最高ぉぉぉぉぉw
URLリンク(www.youtube.com)
>3.そして、望月IUTの解説でも、小平スペンサー射が出てくる
> 小平スペンサー射の数論版が、望月IUTですね
こいつ、愛国のあまり、アタマおかしくなったか?
そもそもタイヒミュラーどこ行ったんだよw
彼はドイツ人だろ しかも筋金入りのナチw
ナチのタイヒミュラーと
ユダヤ人アナーキストの息子であるグロタンディクの
融合がIUT
>4.さらに、岩澤理論の影響も
> 谷山志村予想の解決に、ワイルズ先生は岩澤理論を使ったという
> 望月IUTで使われる
> ”q パラメータ” (=”q(=e^2πiτv)展開”)にも
> ここに、日本人が大きく貢献している
q展開使ったのってそもそもヤコビだろ テータ関数の定義で
URLリンク(ja.wikipedia.org)
ついでにいうと、ヤコビもユダヤ人な
どこをどうほじくり返しても
根っこはドイツとユダヤ
縄文遺跡なんか出て来やしねえ
あのさ、ただ自慢したいためだけに日本持ち出すのやめてくれる?
伝統ってそういうもんじゃないだろ
ということで、これでも見て改心しやがれ(マジ)
URLリンク(www.youtube.com)
725:132人目の素数さん
20/10/31 08:21:15.58 CLm9DCft.net
国家とかいうものが、つくづく馬鹿らしいと思える、イイ文章
チャーン(陳省身)先生を偲んで
URLリンク(mathsoc.jp)
南開大学の数学研究所の新しい大きな建物は完成したばかりで,
2005 年夏には,完成のお祝いと,Chern 類発見 60 周年を記念して
シンポジュウムを開催する予定だったのに大変残念なことである.
新しい建物も出来上がり,研究所はこれから本格的に発足というときだったので,
チャーン先生は南開大学の�
726:w長(数学者)を枕許によび, 建物を造るのは易しいが,よい数学者を集めるのが大切で, それが如何に難しいかを懇々と説かれたそうである. 時代劇を彷彿させる話である. また May さんの話では,意識の薄れた先生が最期に遺された言葉は 「ギリシャに行く」だったそうで,誰にも何故先生がそう言われたのか 分からなっかた由. ギリシャが幾何学発祥の地であることを思えば,いい話である. 2005 年 2 月 13 日の午後,バークレーの大学のキャンパスで 数学教室と MSRI主催の追悼式が行われたが, Paul さんと May さんも出席され,南開大学での葬儀の写真を見せて下さったが, 政府が取り仕切り事実上国葬のようになり一万人近い参列者があったそうだ. 棺を中国の国旗で覆うか,共産党の旗で覆うか,役人が議論しているのを聞いて, May さんが父は一介の数学者だったからと普通の白い布にしてもらったそうである. また,何処に埋葬するかで揉めたので May さんは遺骨をアメリカに持って帰って来てしまったと話していた. 先生御夫妻は戦争中は大変な苦労をなさったが,シカゴに来られてからは 平穏に数学の研究も出来,また晩年には母国の数学の発展に尽くすことも出来て, お幸せだったのではないかと思う. 先生の御冥福を祈ってこの拙文を終えたい.
727:現代数学の系譜 雑談
20/10/31 09:19:29.86 YFnoOBTS.net
まず、>>648 訂正
中村博明先生→中村博昭先生(>>7)
失礼しました
さて
>>649-650
維新さん、あなた常識と良識がないよね
自称東大数学科出身で、その実底辺Fランの 不遇な数学落ちぼれ、無職ヒキコモリにして
サヨのアナーキスト(無政府主義)の日本嫌い
アンチIUTというよりも、アンチ日本だなw(^^
IUTは動きだした
PROMENADE IN IUT URLリンク(www.kurims.kyoto-u.ac.jp)
このPROMENADE IN IUT以外に、米国にもIUT支持者いるよ
Taylor Dupuy氏とKirti Joshi氏
IUTは動きだした
まあ、じっくり見ていれば、IUTが前進していることが分かってくる。私も、じっくり見守ることにします
おサルの維新さん、頑張ってね
踊って下さいwww
728:132人目の素数さん
20/10/31 09:39:58.87 CLm9DCft.net
>>651
ボクは倒幕志士でもコミュニストでもアナーキストでもないけど
数学が全然分かってないくせに
日本自慢をしたいだけのために
IUTを支持する奴は🐎🦌だと思ってるよ
だってそうじゃん 意味ないだろ
◆yH25M02vWFhPは、闇雲に愛国活動にいそしむ前に
なんで自分の心がうつろで満たされないのか
考えたほうがいいんじゃないかな?
むやみに愛国踊りを踊っても決して心は満たされないよ
729:132人目の素数さん
20/10/31 09:48:16.76 ZZZyJS8+.net
m・n・x≠ 0 のとき
x^m が nの倍数 ⇒ x は rad(n) の倍数
730:132人目の素数さん
20/10/31 09:50:25.16 CLm9DCft.net
Ofer Gabberが、望月のIUT理論について何というか興味はある
ま、きっとこういうんだろうな
「キモ�
731:`ワルイ!近づかないで!」
732:現代数学の系譜 雑談
20/10/31 12:38:53.23 YFnoOBTS.net
>>652
うん
あなた、アンチ日本とうよりも
”アンチ日本&アンチ日本人”
要するに、不遇な底辺Fラン数学科おちこぼれだが
自分がこんなに不遇なのは、日本及び日本人が悪いのだ
日本及び日本人が憎い~! ってことなのでしょうね
分かります
不遇な 維新さん、いやさおサルさん
せいぜい、5ch数学板で自分を慰めてください ww(^^
733:現代数学の系譜 雑談
20/10/31 12:40:02.11 YFnoOBTS.net
>>655 タイポ訂正
あなた、アンチ日本とうよりも
↓
あなた、アンチ日本というよりも
734:132人目の素数さん
20/10/31 15:39:51.34 CLm9DCft.net
>>655
>不遇な底辺Fラン数学科おちこぼれ
あ、君
Fランでも大学卒がうらやましいんだ
Fランでも数学科がうらやましいんだ
ま、工業高校卒じゃな・・・
君、そうだろ?大学の工学部卒でも知ってる筈のこと
ことごとく知らなかったもんなあ
任意の正方行列に逆行列がある、といいきってたもんな
大学の線型代数では、
「逆行列が存在するのは、行列式が0以外のとき、そのときに限る」
と教えるもんなあ 証明知らなくてもそのことくらいは馬鹿でも覚える
知らない時点で大卒じゃないな 大卒失格w
もちろん、君が大学に入れないのは日本国のせいではないよ
君の能力のせい
あのさ、音痴が歌手をめざしても無理だろ?
不器用なやつがバンドやろうとしても無理だろ?
運動神経ない奴がサッカー選手めざしても無理だろ?
そういうことなんだよ
頭の悪い奴が数学者めざしても無理
頭が良くたって無理なんだから
東大で大学院まで行ったのに、数学者になれなかった人を沢山知ってる
決して馬鹿ではなかったけど それでも無理だったんだ
悪いけど、大学に入れない奴はもとより
工学部当たりの連中ですら無理
ガウスの整数論も読めないんじゃね
ニッポン自慢とか自分自慢とかする前に
なんで自慢したいのか 自分の心のうつろさの
原因を見つめなおしたほうがいいんじゃね?
コピペじゃ心の穴は埋まらないよ
735:ID:1lEWVa2s
20/10/31 15:43:56.22 ieM1TTp5.net
>>657
現代数学さんはいい情報元なんだぞ。
忘れるな。
スクショとってるからな。
ま、みないけど。
毎日しんじていいか様子見してるぞ。
736:132人目の素数さん
20/10/31 15:50:49.54 CLm9DCft.net
それにしても、一番ヒドイとおもったのは
a∈b ⇔ a⊂b
とか、自信満々で言い切ったときだな
一瞬「ここは特殊学級か?」とおもったぜ マジで
{{a,d},{b,c}}と、{a,b,c,d}は、集合としては違うんだぜ
{a,b}⊂{a,b,c,d} だが {a,b}∈{a,b,c,d} じゃないぜ
{a,d}∈{{a,d},{b,c}} だが {a,d}⊂{{a,d},{b,c}} じゃないぜ
あのなあ、こんな初歩的なことすら理解せずに間違う奴が
いくら「IUTガー」とかいってコピペしたって
何も正しく理解できないんだから全く無意味なんだよ
工業高校卒は高校の数学すらアヤシイんだから
大学の数学なんか分かるわけないだろ
あんたが
a∈b ⇔ a⊂b
といいきったその瞬間
「こいつ、数学的にはidiot(白痴)も同然だ」
と思ったから、もうなにをいっても
「はいはい、またidiotがわけもわからずコピペしまくってるな
そんなことしてリコウぶっても、あんたが馬鹿なのはもうみんな知ってるから
内容空疎で無駄なウソ自慢はやめて 田舎の畑でトマトでも作ってろ」
と思うばっかり
トマトはいいぞ、グロタンディクもトマトつくってたっていうし
737:132人目の素数さん
20/10/31 15:56:03.81 CLm9DCft.net
>>658
あ、君、薬飲んでるかい
738:? ◆yH25M02vWFhPみたいなつまらない奴のマネだけはしちゃだめだよ わけもわからずキーワードで検索して見つけた文章をロクに読まずにコピペして 「あー、今日も沢山勉強した」 なんていって、無理に自分を満足させようとするつまらない大人にだけはなるなよ そういうのって、結局エロキーワードで検索して見つけた動画で**して 「あー、今日も沢山抜いた」 っていうエロいオトナと大してかわんねぇからw ま、日本のAVとAV女優は世界に誇れるかもな マジで
739:132人目の素数さん
20/10/31 16:04:30.80 scjOicKl.net
>{a,d}∈{{a,d},{b,c}} だが {a,d}⊂{{a,d},{b,c}} じゃないぜ
しかし、そういうことにしよう!という話かも
次元の境界を超えるのだ
740:132人目の素数さん
20/10/31 16:24:26.53 CLm9DCft.net
>>662
本気?冗談?
前者の場合:精神科で診て貰ってください
後者の場合:つまらないのでそういうことは他所の板でやってください
741:現代数学の系譜 雑談
20/10/31 18:16:20.32 YFnoOBTS.net
転載
Inter-universal geometry と ABC予想 (応援スレ) 49
スレリンク(math板:714番)-715
714 名前:132人目の素数さん[sage] 投稿日:2020/10/31(土) 15:09:01.96 ID:X0/m0Fmi
math_jin
望月新一の最新情報更新
2020年10月31日
・(出張・講演)11月6日(金・日本時間)に予定されているBerkeley Colloquiumのオンライン講演のスライドを掲載。#IUTABC
URLリンク(www.kurims.kyoto-u.ac.jp)
715 自分:現代数学の系譜 雑談 ◆yH25M02vWFhP [] 投稿日:2020/10/31(土) 15:30:03.14 ID:YFnoOBTS [1/2]
>>714
ありがとう
読んだ
それ面白いな
下記とほぼ一致だね
(>>638)
IUTを読むための用語集資料集スレ
スレリンク(math板:638番)
742:現代数学の系譜 雑談
20/10/31 18:17:41.05 YFnoOBTS.net
>>658
>現代数学さんはいい情報元なんだぞ。
おお、ありがとさん
おれの書いていることは、あんまり信用するな
引用元があるから、主にそっちを見ればいいべ(^^;
743:現代数学の系譜 雑談
20/10/31 19:27:58.81 YFnoOBTS.net
>>663
>・(出張・講演)11月6日(金・日本時間)に予定されているBerkeley Colloquiumのオンライン講演のスライドを掲載。#IUTABC
>URLリンク(www.kurims.kyoto-u.ac.jp)
これは一読の価値ありだな(^^
744:132人目の素数さん
20/10/31 20:45:58.75 CLm9DCft.net
獣の数字 もらった!
>>664
>おれの書いていることは、あんまり信用するな
誤 あんまり
正 まったく
謙遜してるつもりだろうが
たまにはいいこといってると思ってるのが自惚れ
まったくダメダメだから 工業高校卒のブルーカラー君
745:現代数学の系譜 雑談
20/10/31 21:35:26.30 YFnoOBTS.net
>>665 参考
URLリンク(events.berkeley.edu)
UC Berkeley
Mathematics Department Colloquium: Classical Roots of Inter-universal Teichmuller Theory
Colloquium November 5 Shinichi Mochizuki
New advances in mathematics are often portrayed as the ultimate outcome of a strictly linear march, i.e., as the erection of a towering edifice, floor by floor, building on the advances of the state of the art of the previous generation.
On the other hand, some advances in mathematics occur in such a way as to bear little resemblance to nearby generations, while sporting a somewhat striking "atavistic" resemblance to generations of the distant past. The present talk will focus on exposing the fu
746:ndamental conceptual framework of inter-universal Teichmuller theory as a natural, albeit somewhat novel, outgrowth of mathematics that dates back partly to the 1980's (Faltings' invariance of the height of abelian varieties with respect to isogeny), partly to the 1960's (Grothendieck's theory of crystals), partly to the 1930's (classical complex Teichmuller theory), and partly to the nineteenth century (the Jacobi identity for the theta function on the upper half-plane). Just as it is entirely unrealistic to attempt to understand the notion of a Weil cohomology (such as etale cohomology) without first achieving an adequate level of understanding of the notion of singular cohomology in algebraic topology, it is substantially unrealistic to attempt to appreciate the central ideas of inter-universal Teichmuller theory in the absence of a solid grasp of the common thread ? consisting of a certain common underlying logical structure ? that permeates the (at first glance) somewhat disparate theories listed above (i.e., invariance of the height by isogeny, crystals, classical complex Teichmuller theory, and the functional equation of the theta function). This common underlying logical structure will form the central theme of the present talk.
747:現代数学の系譜 雑談
20/10/31 21:58:44.26 YFnoOBTS.net
>>667
>UC Berkeley
カリフォルニア大学バークレー校か
だれか、IUTを認めた人がいる?
Kiran Sridhara Kedlayaとは違う(彼は、カリフォルニア大学サンディエゴ校だ)
URLリンク(ja.wikipedia.org)
カリフォルニア大学バークレー校
略称はUCバークレー(Berkeley)。バークレー校はカリフォルニア大学 (University of California) の発祥地であり、10大学からなるカリフォルニア大学システム(UCシステム)の中で最も古い歴史を持つ。
URLリンク(ja.wikipedia.org)
カリフォルニア大学サンディエゴ校
URLリンク(kskedlaya.org)
Kiran Sridhara Kedlaya
Professor of Mathematics
Department of Mathematics,
University of California,San Diego
URLリンク(en.wikipedia.org)
Kiran Kedlaya
at the University of California, San Diego.
748:現代数学の系譜 雑談
20/10/31 23:02:52.03 YFnoOBTS.net
>>666
>まったくダメダメだから 工業高校卒のブルーカラー君
維新さん、いやさ おサル
哀れだな
1.あんたの主張は、下記の賤民の考えと同じだな
2.要は、自分より下を作って、自身の尊厳と精神の安定を得ようとしているわけだね(^^
3.だが、残念なことにここは数学板だ。あんたの主張の証明は厳密ではない
4.他人をディスっても、自分の実力の証明は出来ていないぞ
5.逆に、自分に実力がないからこそ、必死に他人をディスってると、見透かされているよねw
さすがに、数学板の住民を甘く見過ぎだよ、おサル
(参考)
URLリンク(ja.wikipedia.org)
賤民
賤民とは、通常の民衆よりも下位に置かれた身分またはその者を指す。
近代
江戸時代の賤民制度は、四民平等をもって廃止された
江戸時代には家畜解体業や革細工などの専用の職業が与えられたり、特定の物品の専売権を持つ事により、結果的に生活の安定は最低限保障(場合によっては一般の平民以上の富者となるものもいた)されていた
しかし近代の四民平等は名目のみであり、
749:その解消のための具体的な施策が行われなかった そのために他業種への転職が滞ることになった その一方で専用であった業種への新規参入する人々が現れ、市場競争が始まった その結果、生活基盤が崩壊する貧民が続出して部落差別問題の深刻化の一因ともなった https://youshofanclub.com/2020/09/06/caste/ 洋書ファンクラブ トランプを支えている強力なパワーは、アメリカのカースト制度である。 渡辺由佳里 20200906 インドのカースト制度にはヴァルナと呼ばれる4つの身分があるが、それに属さない最下層が不可触民(ダリット)である。マーティン・ルーサー・キング・ジュニア牧師が1959年にインドを訪問したとき、彼はダリットとアメリカの黒人には共通点が多いことを学んだ。親がダリットだった生徒たちにキングを紹介するとき、校長は「アメリカから訪問された私たちの同胞である不可触民」と表現した。キングは後にそのときのことを「一瞬、自分が不可触民と呼ばれてショックを受け、むっとした」と語った。 でも、アメリカの黒人も同様に、「人間であって、人間ではない」という人工的な身分制度の最下層に抑え込まれてきたのだ。
750:現代数学の系譜 雑談
20/10/31 23:10:59.40 YFnoOBTS.net
>>669 補足
維新さん、いやさ おサルが
IUTの不成立を主張するならば
例えば、SS文書とそれに対する望月の文書と
両者を読み込んで、数学的なロジックをときほぐし
自分で消化して、この板で(別にこのスレでなくとも良いが)
持論を展開し主張すれば良い
でも、とてもそんな実力ないわなw(^^
おっさんにはねww(^^
751:現代数学の系譜 雑談
20/10/31 23:20:12.78 YFnoOBTS.net
>>670
私? 私には、当然そんな力はありませんよ
でも、分からないなりに、斜め読みしていますよ
斜め読みして、>>663や>>665を書いています(^^
工学屋は、論文は最初から読んだりしません
まず、表題、著者、アブスト、序文、目次、結論
これらを読んで、この論文がどういうもので
自分に役に立ちそうか、面白そうかなど
を把握したあと
本文を読むべきかどうかを決める
数学などで、「本文が難しすぎて読めない~!」(ハスキ風です)
とかありますよ、当然
そういうときはムリしません。どうするかは、そのとき次第。時間を掛けて読んでみるか、一旦おくかですね
752:特別支援学校教諭
20/11/01 05:36:25.24 Fdz+cM+e.net
>>671
>分からないなりに、斜め読みしていますよ
>斜め読みして、書いています
>数学などで、「本文が難しすぎて読めない~!」とかありますよ、当然
>そういうときはムリしません。
>どうするかは、そのとき次第。
>時間を掛けて読んでみるか、一旦おくかですね
数学でお困りのようですね
この度、以下のスレッドを立ち上げました
ぜひご利用ください
現代数学 特別支援学級
スレリンク(math板)
753:特別支援学校教諭
20/11/01 05:42:13.31 Fdz+cM+e.net
>>669
>賤民 賤民とは、通常の民衆よりも下位に置かれた身分またはその者を指す。
>インドのカースト制度にはヴァルナと呼ばれる4つの身分があるが、
>それに属さない最下層が不可触民(ダリット)である。
>マーティン・ルーサー・キング・ジュニア牧師が1959年にインドを訪問したとき、
>彼はダリットとアメリカの黒人には共通点が多いことを学んだ。
>アメリカの黒人も同様に、「人間であって、人間ではない」という
>人工的な身分制度の最下層に抑え込まれてきたのだ。
知的レベルによる「ヒエラルキー」は厳然と存在しますが
「カースト」のような不変性はありません
努力しだいで上にあがることはできます
頑張りましょう
754:特別支援学校教諭
20/11/01 05:50:29.80 Fdz+cM+e.net
IUTに限りませんが
正当性の主張は
論文を読み込んで、数学的なロジックをときほぐし
自分で消化し�
755:ス上で、実施する必要があります 他人の云うことを理解もせずに コピー&ペーストしても無意味でしょう この板でもそういう人は多々いらっしゃいますが 知的レベルの向上には全くつながりません まず、基本的なことから順々に積み上げていきましょう 物理学科出身でも工学部出身でも文系出身でも高校卒業でも問題ありません 頑張りましょう
756:現代数学の系譜 雑談
20/11/01 07:36:20.21 o4gNmK89.net
>>672
>数学でお困りのようですね
全然
まったく
困ってません(^^
維新さん、あなたと徹底的に対立したことでは、全て私の勝利だった
例えば
・時枝:あなたは現代確率論が、全く理解できていない
・可算無限シングルトンの存在:あなたは、レーベンハイム-スコーレムが、理解できていない
そしていま
・IUT:あなたは数学界がIUTを認める方向に動いていることが理解できない。
∵ 日本及び日本人嫌いの性格から、望月を認められないんだね
(参考)
URLリンク(ja.wikipedia.org)
レーヴェンハイム?スコーレムの定理
可算な一階の理論が無限モデルを持つとき、全ての無限濃度 κ について大きさ κ のモデルを持つ、という数理論理学の定理である
定理の上方部分の証明は、いくらでも大きな有限のモデルを持つ理論は無限のモデルを持たねばならないことをも示す
757:現代数学の系譜 雑談
20/11/01 07:45:43.70 o4gNmK89.net
>>673
>知的レベルによる「ヒエラルキー」は厳然と存在しますが
しばしば、世間知らずの数学者がおちいる錯覚だね、それ(^^;
”世間の知的レベルが一次元で、数学の試験の点数(あるいは偏差値)で全順序構造になっている”と
だが、現実の世の中では、”知的レベル”は おそらく多次元だし
一般の数学者は、”金儲け”と”政治バトル能力”のレベルが低いと思うよ、きっと(これに、納得する大学教授多いのでは?(^^ )
(参考)
URLリンク(ja.wikipedia.org)
全順序 - Wikipediaja
数学における全順序(ぜんじゅんじょ、英: total order)とは、集合での二項関係で、推移律、反対称律かつ完全律の全てを満たすもののことである。 単純順序
758:現代数学の系譜 雑談
20/11/01 08:02:12.59 o4gNmK89.net
>>674
>正当性の主張は
>論文を読み込んで、数学的なロジックをときほぐし
>自分で消化した上で、実施する必要があります
それって、証明と反証と同じだよね
そして、アンチIUTのあなた、全然実力伴ってないよねwww
>物理学科出身でも工学部出身でも文系出身でも高校卒業でも問題ありません
世の中は、数学だけで成立っているわけではない
この単純な事実をしばしば、数学者は理解できなくなる。数学界にどっぷり漬かりすぎるとね
工学は、当然数学だけではない。物理あり、化学ありだ
”数学的なロジック”だけに頼ると、とんでもない落とし穴にハマルことがある
(余談だが、Peter Woit氏の”Criticism of string theory”批判もこれ。数学的には綺麗だが、物理的な検証がないぞってね)
工学は、当然工学的な判断を下さなければならない
物理に対しても、化学に対しても、そして数学に対してさえね
”数学的なロジック”とは、別の判断をね(”理屈は合っているかもしれないが、使えない”みたいなね)
(参考)
URLリンク(en.wikipedia.org)
Peter Woit
Criticism of string theory
He is critical of string theory on the grounds that it lacks testable predictions and is promoted with public money despite its failures so far,[1]
759:現代数学の系譜 雑談
20/11/01 08:17:26.57 o4gNmK89.net
私ら、ミーハーのヤジ�
760:Eマですから(>>629) (^^; IUTを、米大統領選と同じように 楽しんでみています いま、IUT陣営は世界にその勢力を広げつつあります(^^
761:特別支援学校教諭
20/11/01 08:40:53.52 Fdz+cM+e.net
>>675
>維新さん、あなたと徹底的に対立したことでは、全て私の勝利だった
まず、私は「維新さん」ではありません
一介の教師にすぎません
その上で、その「維新さん」ことアナーキー野郎Mara Papiyas氏との議論は
横から拝見させていただきましたが、残念ながら、全て貴方が間違ってます
この後、いちいち指摘させていただきます
これも教育という仕事ですので、悪く思わないで下さいね
762:特別支援学校教諭
20/11/01 08:52:59.54 Fdz+cM+e.net
まず数学セミナー記事「箱入り無数目」に関してですが
>あなたは現代確率論が、全く理解できていない
といってますが、◆yH25M02vWFhP はそもそも
記事が正確に読めていません
読み落とした箇所
1.各試行に際して、箱の中身を一切入れ替えない点
2.各試行に際して、列(そして箱)を毎回選びなおす点
あなたの主張では
A.各試行に際して、箱の中身は毎回入れ替える
B.各試行に際して、箱は選びなおさない
ということになりますが、それならそもそも箱は1つで十分ですし
実際あなたの「計算」ではそういう簡単なことしかやってません
それを大袈裟に「現代確率論」といってるだけです
しかし、当該記事では、箱の中身は全く入れ替えない前提で計算しています
その際、確率計算のもととなっているのは、列を毎回選びなおす行為です
したがって確率計算としては実に初等的です
要するにあの記事では確率を取り上げているものの、
重要なのは確率以前の設定なのです
そのことが記事から読み取れるかどうかが鍵でしょう
記事を理解した上で
「そんな簡単な設定はばかばかしい
もし、箱の中身を試行毎に入れ替えるなら
非可測性により確率計算はできない」
というPruss氏の指摘はごもっともであり、当然のことです
しかし、あなたの主張はそれ以前の段階であるので
あなたが自分の主張の正当性の根拠としてPruss氏を持ち出すのは見当違いです
Pruss氏から見れば、記事の方法もあなたの方法も同じ理由で却下されるべきものです
763:特別支援学校教諭
20/11/01 08:58:23.81 Fdz+cM+e.net
次に「可算無限シングルトン」の件ですが、
あなたの主張の正当性の根拠として
レーベンハイム-スコーレムの定理を
持ち出すのは筋違いです
つまり、レーベンハイム-スコーレムの定理を誤解してるのはあなたです
あなたは、超限順序数を超準自然数だと思ってるようですが、誤解です
最初の超限順序数であるωには、直前の順序数ωー1は存在しません
一方、0以外のいかなる自然数nも、n-1が存在します
nが超準自然数であっても同様です
764:特別支援学校教諭
20/11/01 09:03:08.67 Fdz+cM+e.net
>>676
>>知的レベルによる「ヒエラルキー」は厳然と存在しますが
>”世間の知的レベルが一次元で、
>数学の試験の点数(あるいは偏差値)で
>全順序構造になっている”と
ヒエラルキー=全順序、と考えるのは誤解でしょう
あなたは、肝心な数学の話では言葉を粗雑に扱うのに
数学以外の話で無駄に精密な解釈をする癖がありますが
どうやら事柄の重要度の判断に重大な狂いがあるようです
765:特別支援学校教諭
20/11/01 09:07:53.63 Fdz+cM+e.net
>>677
>世の中は、数学だけで成立っているわけではない
>”数学的なロジック”だけに頼ると、とんでもない落とし穴にハマルことがある
数学の正当性に関して、数学以外の根拠は無意味です
あなたはどうもロジックが苦手のようですね
で、自分でも自覚しているらしく、
ロジックから逃げたがっている
しかし、数学の正当性は、ロジックによるしかありません
苦手だからと避けていては数学は学べません
ま、私が一からロジックを教えてあげましょう
工学でも実生活でもきっと役にたちますよ
766:特別支援学校教諭
20/11/01 09:17:00.37 Fdz+cM+e.net
>>678
>私ら、ミーハーのヤジウマですから
>IUTを、米大統領選と同じように楽しんでみています
あなたは、自分以外に「ミーハーのヤジウマ」がいると思っているようですが
私が見る限り、IUTは正しいといい張ってるのは、あなただけです
つまり、正確には「私ら」ではなく「私」です
あなたは、IUT以前に
767:そもそもタイヒミュラー理論が分かってないようです いや、それ以前にそもそも代数曲線のモジュラスが分かってないのではないですか? さらに、数論には全く興味ない、と断言していましたが、 それではABC予想の意味も数論幾何学の問題意識も まったく分かってないでしょう それではまったく意味が分らないことになりますね 大統領選やスポーツの試合を見るのとは全然違います どちらも見ればわかりますからね ついでにいうと、今回のアメリカの大統領選挙の真の問題は トランプが破廉恥な白人至上主義政策を主張し続ける点ではなくて バイデンの政策が結局偽善的で貧富の差などの深刻な問題に対する 根本的な解決に全く繋がらない点でしょう 大統領選挙が所詮茶番だといわれる所以です。
768:特別支援学校教諭
20/11/01 09:22:08.07 Fdz+cM+e.net
◆yH25M02vWFhP さんの場合、
そもそも文章読解力が低い点が問題です
ここは数学だけでなくあらゆる知的活動の障害になります
あなたがいかなる仕事をしてきたのか知りませんが
おそらく高い知的レベルが求められる仕事では
業績を上げられなかったのではないですか?
しかし、私に任せてください
文章読解力を大いに改善させたいと思います
769:現代数学の系譜 雑談
20/11/01 09:56:10.21 o4gNmK89.net
>>679
>まず、私は「維新さん」ではありません
>一介の教師にすぎません
なるほど
妄想+多重人格? 統合失調症?
あなたが、「維新さん」=おサルさん
でなければ (つまりは同一人物でなければ)
時枝(>>680)とか
"「可算無限シングルトン」のレーベンハイム-スコーレム"に
あなたのような反応はできないよね!
「横から拝見」だと?
スレも全く違うし、議論は何年にも渡っているよ!w
当事者以外には、あり得な~い!www
>>682
>ヒエラルキー=全順序、と考えるのは誤解でしょう
まあ、確かに半順序もありかも(^^;
なお、数学的な議論からずれるが、ある数学の試験で、同点の二人を比較不能とするか、比較可能で同点とするか、これ哲学問題じゃね?(^^;
(参考)
URLリンク(ja.wikipedia.org)
順序集合
比較不能の場合を許容する順序集合を半順序集合(はんじゅんじょしゅうごう、英: partially ordered set, poset)という。
特に、半順序集合で全ての2元が比較可能であるものを全順序集合 (totally ordered set) という。
(引用終り)
あとのゴミレスは、スルーだwww
770:現代数学の系譜 雑談
20/11/01 09:58:07.55 o4gNmK89.net
>>686 リンク追加訂正
"「可算無限シングルトン」のレーベンハイム-スコーレム"に
↓
"「可算無限シングルトン」のレーベンハイム-スコーレム"(>>681)に
771:特別支援学校教諭
20/11/01 10:04:38.79 Fdz+cM+e.net
>>686
「箱入り無数目」については、記事文章が正しく読めれば、
誰でも>>680のように考えますよ
「可算無限シングルトン」の件についても
超限順序数ωが極限順序数で前者ω-1が存在しないことを理解すれば
レーベンハイム-スコーレムの定理と無関係と分かります
ヒエラルキーの件は数学と無関係ですね
それ以外は何もないですね
片付けとは無駄を切り捨てることから始まります 早速実践しましょう
772:特別支援学校教諭
20/11/01 10:15:23.71 Fdz+cM+e.net
ちょっとご挨拶がわりに
スレリンク(math板:8番)
773:現代数学の系譜 雑談
20/11/01 10:17:46.02 o4gNmK89.net
>>681
>最初の超限順序数であるωには、直前の順序数ωー1は存在しません
>一方、0以外のいかなる自然数nも、n-1が存在します
>nが超準自然数であっても同様です
スレチだが少しだけ
nが超準自然数であっても、∞-1は定義に依存するよ(下記)
つまりは、ωや∞は、人が数学的に定義したもの
一方、”標準的な自然数1,2,3,・・・”は、日常の人の生活に合うように定義したもの(今風なら”カノニカル”だな)
つまり、日常の人の生活に合わない自然数の定義は、(数学としては)あり得ても、それは(日常の数学としては)採用されないってことだ
その点、∞には、定義の自由度ある
また、順序数ω-1が存在しなくても(数学として定義不能でも)、なんにも数学的不都合はないよ
774:(^^; (参考) https://ja.wikipedia.org/wiki/%E6%8B%A1%E5%A4%A7%E5%AE%9F%E6%95%B0 拡大実数 拡張実数あるいはより精確にアフィン拡張実数 は、通常の実数に正の無限大 +∞ と負の無限大 ?∞ の二つを加えた体系を言う https://ja.wikipedia.org/wiki/%E8%B6%85%E5%AE%9F%E6%95%B0 超実数 超実数または超準実数と呼ばれる数の体系は無限大量や無限小量を扱う方法の一つである。超実数の全体 *R は実数体 R の拡大体 https://ja.wikipedia.org/wiki/%E5%AE%9F%E6%95%B0%E7%9B%B4%E7%B7%9A 実数直線 位相的な性質 実数直線上には標準的に二つの互いに同値な方法で位相を入れることができる。一つは、実数直線が全順序集合であることを用いて順序位相を入れる方法。もう一つは先に述べた距離からくる内在的な距離位相を入れる方法である https://upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Real_projective_line.svg/225px-Real_projective_line.svg.png 実数直線にただひとつの無限遠点を加えてコンパクト化できる。 https://ja.wikipedia.org/wiki/%E3%83%AA%E3%83%BC%E3%83%9E%E3%83%B3%E7%90%83%E9%9D%A2 リーマン球面 https://upload.wikimedia.org/wikipedia/commons/thumb/8/85/Stereographic_projection_in_3D.png/330px-Stereographic_projection_in_3D.png リーマン球面は、複素平面で包んだ球面(ある形式の立体射影による ― 詳細は下記参照)として視覚化できる。
775:現代数学の系譜 雑談
20/11/01 10:32:27.35 o4gNmK89.net
>>690
>∞-1は定義に依存するよ(下記)
スレチついでに
∞-1=∞という定義は可能だよ(下記)
でも、これを通常の数と同じに式変形して
∞-∞=1 とすることはできない!
つまりは、∞とかωとかは、
通常の計算とか式変形に乗らないってことでしょ!(^^
(参考)
URLリンク(ja.wikipedia.org)
拡大実数
拡張実数(かくちょうじっすう、英: extended real number; 拡大実数)あるいはより精確にアフィン拡張実数 (affinely extended real number) は、通常の実数に正の無限大 +∞ と負の無限大 -∞ の二つを加えた体系を言う。新しく付け加えられた元(無限大、無限遠点)は(通常の)実数ではない
算術演算
実数全体 R における四則演算は、以下の規約により部分的に R まで拡張することができる。
略
式 "a + ∞" は "a + (+∞)" の意味でもあり "a - (-∞)" の意味でもある。また、式 "a - ∞" は "a - (+∞)" の意味でもあり "a + (-∞)" の意味でもある。
しかし、所謂不定形の式(英語版) ∞ - ∞, 0 × (±∞), ±∞?±∞ などはやはり意味を成さない(英語版)とするのが普通である。これらの規約は函数の無限大に関する極限についての法則をモデル化するものになっているが、確率論および測度論ではさらに、"0 × (±∞) = 0" を規約に追加することが多い(確定した 0 を掛けた 0 × (有限) の形の式の極限としての意味を持つことが多いため[2])。
また、数式 1/0 は +∞ とも -∞ とも定めることができない。これは連続函数 f(x) が f(x) → 0 を満たすとすると、これは逆数函数 1/f(x) が集合 {-∞, +∞} の任意の近傍に殆ど含まれる (eventually contained in) ことは意味するけれども、必ずしも 1/f(x) が -∞ か +∞ の何れか一方に収斂することを意味しないことによる(それでも、その絶対値 |1/f(x)| は +∞ へ近づく)。何となれば f(x) = 1/(sin(1/x)) を考えるとよい。
776:特別支援学校教諭
20/11/01 10:39:17.47 Fdz+cM+e.net
>>690
>nが超準自然数であっても、∞-1は定義に依存するよ
ええ、>>681でもそう書いてます
超限順序数は、超準自然数ではありませんよ
「超」が同じだからあと同じとか粗雑ですよ
>順序数ω-1が存在しなくても(数学として定義不能でも)、
>なんにも数学的不都合はないよ
ωー1が存在しない=「可算無限シングルトン、は実現できない」 ですが
あなたの主張を完全に否定する点で最も重大な不都合ですよ
ま、あなたが自分の
777:誤りを認めればいいだけで、大したことじゃないですね 正しい理解は、誤解を自覚することから始まります 「可算無限シングルトン」はまったく誤りだと自覚しましたか?
778:特別支援学校教諭
20/11/01 10:42:50.67 Fdz+cM+e.net
>>691
>∞-1=∞という定義は可能だよ
射影直線の∞は、超限順序数ではありませんが
異なる定義によるものを、勝手に同一視するのは誤りですよ
1.超限順序数
2.超準自然数
3.無限遠点
これらは全て別物です
勝手に「三位一体」とかいって同一視しないように
いいですね?
779:現代数学の系譜 雑談
20/11/01 12:31:18.77 o4gNmK89.net
>>692
>ωー1が存在しない=「可算無限シングルトン、は実現できない」 ですが
(等号成立の)数学的な証明がないし
”ωー1が存在しない”としても
ωが存在するなら、それでシングルトンも可でしょw
ωに対応するシングルトンを考えて、それを最初の可算無限シングルトンとすれば良い!
それを、Singωとでもすれば良い!!w(^^
w+1に対応するシングルトンは、Singω+1となるだけの話だよね
なお、ご参考
<時枝関連>と<「可算無限シングルトン」>の関連スレは下記。では
記
1.
<時枝関連>
・現存スレでは下記辺りをどうぞ。過去スレにもかなりあるけど(それも辿れるが)、下記くらいで良いでしょう(^^
現代数学の系譜 カントル 超限集合論他 3
スレリンク(math板:7番)-
2.
<「可算無限シングルトン」>
・現存スレは無いが
現代数学の系譜 カントル 超限集合論
スレリンク(math板:1番)- (2019/10/05(土) )
780:現代数学の系譜 雑談
20/11/01 12:32:33.82 o4gNmK89.net
>>694 タイポ訂正
w+1に対応するシングルトンは、Singω+1となるだけの話だよね
↓
ω+1に対応するシングルトンは、Singω+1となるだけの話だよね
781:現代数学の系譜 雑談
20/11/01 12:35:22.35 o4gNmK89.net
>>679
>一介の教師にすぎません
ああ
たしか、哀れな素人氏が
「さる石は、小学生の塾で教えている」とか言っていたな
がんばれよ(^^
782:現代数学の系譜 雑談
20/11/01 14:09:52.97 o4gNmK89.net
>>695 追加訂正
w+1に対応するシングルトンは、Singω+1となるだけの話だよね
↓
ω+1に対応するシングルトンは、Singω+1となるだけの話だよね
↓
ω+1に対応するシングルトンは、Singω+1={Singω}となるだけの話だよね
かな
783:特別支援学校教諭
20/11/01 14:38:47.77 Fdz+cM+e.net
>>694
>”ωー1が存在しない”としても
>ωが存在するなら、それでシングルトンも可でしょw
いえ、不可です
なぜなら 順序数xをシングルトンで実現する場合
その唯一の要素が順序数x-1だからです
つまり、ω-1が存在しないなら、
その存在しないものを要素とする
シングルトンωも存在しません
つまり後続順序数nがシングルトンだからといって
極限順序数ωもシングルトンだと思い込んだのが
誤りなのです
ωは実は、ωより小さい順序数の無限集合とならざるを得ません
なお、ωより小さい全ての順序数を要素とする必要はありませんが
有限集合ではないことは確かです。
というのは、もし有限集合だったらその中の最大となる順序数mが
存在してしまい、ωより小さいがmより大きい順序数nについて、
ωからの∈降下列が存在しなくなってしまうからです。
784:特別支援学校教諭
20/11/01 14:41:21.85 Fdz+cM+e.net
>>696
私が「教師」であるのはこの板だけのことで、
実生活上では別の仕事についています。
785:特別支援学校教諭
20/11/01 14:49:21.30 Fdz+cM+e.net
>>694
><時枝関連>と<「可算無限シングルトン」>の関連スレは…
>>675で「箱入り無数目」と「可算無限シングルトン」を持ち出したのは
◆yH25M02vWFhPさん、あなたですが
注:私は「箱入り無数目」については、著者名を敢えて出さないことにしています
なぜなら記事の内容は、著者自身のアイデアによるものではないからです
それにしても、上記の2件について、あなたはまだご自分の誤りを
認められないようですね・・・教育のし甲斐があるというものです!
正規部分群の定義や、正則行列の件と同じく、あなたが
自分の誤りを認められるよう、導いていきたいと思います
786:現代数学の系譜 雑談
20/11/01 19:29:03.24 o4gNmK89.net
>>698
スレチだが
>なぜなら 順序数xをシングルトンで実現する場合
>その唯一の要素が順序数x-1だからです
ここ、数学的に厳密な証明がない
単なる個人の一つの感想文にすぎない
787:現代数学の系譜 雑談
20/11/01 19:36:08.22 o4gNmK89.net
>>699-700
>私が「教師」であるのはこの板だけのことで、
なんだ
自白したのか?
妄想だったのか、謀ったのかは知らずw
>それにしても、上記の2件について、あなたはまだご自分の誤りを
>認められないようですね
そっくりお返しする
もっとも、さる石と、もう論争するメリットないがね
時枝については、いまどきの数学科生は、おサルの時代と違って、金融数学との関連で、確率論及び確率過程論の修得をしていると見る。大学教程の確率論及び確率過程論の修得していれば、時枝の不成立など一目ですからね
「可算無限シングルトン」も似たようなもので、こちらの勝利は確定しているので、論争する必要なしだ
788:特別支援学校教諭
20/11/01 20:22:59.89 Fdz+cM+e.net
>>701
>ここ、数学的に厳密な証明がない
証明ではなく定義
(Zermelo構成)
aが順序数のとき、{a}をaの後続順序数とする
これだけでは、極限順序数ωを構成する方法は示されない
ωから、ωより小さい任意の順序数nへの∈降下列が存在する、としたとき
そのような条件を満たすωは、ωより小さい順序数の無限集合となる
789:特別支援学校教諭
20/11/01 20:30:59.67 Fdz+cM+e.net
>>702
>もう論争するメリットない
実はこれははじめから「論争」ではない
あなたは間違っているから
私はあなたの間違いを指摘し、
あなたに間違っていることを理解させることで
あなたに数学を理解させるメリットを与える
私には何のメリットはない 純粋な利他行為
「箱入り無数目」に関しては記事を理解していれば
大学の確率論を知らなくても理解できる
100列のうち決定番号が単独最大値の1列を選ばない確率は
あみだくじ100本のうち外れの1本を選ばない確率と同じだから
「可算無限シングルトン」はあなたが極限順序数を知らず
0以外の全ての順序数が後続順序数であると誤解したためのもの
シングルトンとして表せる順序数は後続順序数だけで
ωが後続順序数でないことを理解すればいいだけのこと
790:特別支援学校教諭
20/11/01 20:35:37.58 Fdz+cM+e.net
>>702
蛇足
>こちらの勝利は確定している
♪勝つと思うな 思えば負けよ
URLリンク(www.youtube.com)
791:現代数学の系譜 雑談
20/11/01 22:02:34.58 o4gNmK89.net
>>703
ほいよ
・自然数の構成法は、後者関数の選び方に任意性がある。しかし、「二階述語論理によって定式化することで、ペアノシステムを同型の違いを除いて一意に定めることができる」
・上記で、標準的なノイマン構成以外に、シングルトンによる自然数構成も可能
・自然数全体の集合N((特に順序数に関する文脈で)ギリシャ文字の ω )の存在は、無限公理から導かれるもの。後者関数の定義とは無関係(後者関数にシングルトンを選んだら云々はド素人)
(参考)
URLリンク(ja.wikipedia.org)
ペアノの公理
(抜粋)
存在と一意性
集合論における標準的な構成によって、ペアノシステムの条件を満たす集合が存在することを示せる。 まず、後者関数を定義する; 任意の集合 a に対してその後者を suc(a) := a ∪ {a} と定義する。
N を自然数全体の集合といい、これは時々(特に順序数に関する文脈で)ギリシャ文字の ω と表記される。
この構成法はジョン・フォン・ノイマンによる[1] 。
これは可能なペアノシステムの構成法として唯一のものではない。
一階述語論理で定式化されたペアノの公理は、無数の超準モデルを持つ。(レーヴェンハイム=スコーレムの定理)
二階述語論理によって定式化することで、ペアノシステムを同型の違いを除いて一意に定めることができる[2]。
URLリンク(ja.wikipedia.org)
自然数
集合論において標準的となっている自然数の構成は以下の通りである。
(上記のノイマン構成法で略す)
例えば、0 := {}, suc(a) := {a} と定義したならば、
0 := {}
1 := {0} = {{}}
2 := {1} = {{{}}}
3 := {2} = {{{{}}}}
と非常に単純な自然数になる。
(注:これがシングルトンによる自然数構成)
つづく
792:現代数学の系譜 雑談
20/11/01 22:03:27.47 o4gNmK89.net
>>706
つづき
URLリンク(ja.wikipedia.org)
無限公理(むげんこうり、英: axiom of infinity)とは公理的集合論におけるZF公理系を構成する公理の一つで、「無限集合の存在」を主張するものである。エルンスト・ツェルメロによって1908年に初めて提示された。
解釈と帰結
上記の手続きはペアノの公理における自然数の構成方法と
793:同様である。ZFC公理系において、自然数全体の集合は無限集合の中で最小のものである。(可算集合) 独立性 無限公理はZF公理系において独立した公理である。すなわちZF公理系の他の公理たちから導くことも反証することもできない。 (引用終り) 以上
794:特別支援学校教諭
20/11/01 22:13:46.69 Fdz+cM+e.net
>>706
>自然数全体の集合N(ギリシャ文字の ω )の存在は、
>無限公理から導かれるもの。
ほら、シングルトンじゃないでしょう?
引用文、読みましょうね
無限公理=シングルトンでない、ですよ
無限公理の式 読みましょうね
795:特別支援学校教諭
20/11/01 22:16:31.51 Fdz+cM+e.net
>例えば、0 := {}, suc(a) := {a} と定義したならば、
>0 := {}
>1 := {0} = {{}}
>2 := {1} = {{{}}}
>3 := {2} = {{{{}}}}
>と非常に単純な自然数になる。
>(注:これがシングルトンによる自然数構成)
「自然数構成」ですね
ωは自然数ではありませんね
超準自然数だというなら、あなた、完全間違ってます
ωは超準自然数ではありませんよ
ωは無限公理による、とコピー&ペーストしましたね
つまり、無限集合であって、シングルトンではない、ってことです
796:特別支援学校教諭
20/11/01 22:19:59.51 Fdz+cM+e.net
無限公理は、後続順序数をシングルトンで表す場合なら以下の通り
空集合を要素とし、任意の要素 x に対して {x} を要素に持つ集合が存在する:
∃A({}∈A∧∀x∈A({x}∈A))
つまり A={{},{{}},{{{}}},…}
797:現代数学の系譜 雑談
20/11/01 23:18:44.86 o4gNmK89.net
>>708-710
・無限公理の本質は、それを表現する式のテクニカルな話ではない。単に、後者関数を帰納的に繰返しただけでは、自然数の集合N(順序数ではω)の存在はすっきり言えないってことです
・無限公理の本質は、下記の極限順序数通り。ある後者関数を選ぶと、帰納的に自然数の元が構成できる。そして、無限公理で、極限順序数ω(それは自然数の集合Nでもある)の存在が導かれる
・その後、ωに後者関数を適用することで、”ω, S(ω), S(S(ω)), S(S(S(ω))), ......”(下記)と続くということです
・後者関数の選び方には、任意性があるが、「二階述語論理によって定式化することで、ペアノシステムを同型の違いを除いて一意に定めることができる」
・だから、シングルトンによる後者関数に目くじら立てるのは間違い。シングルトンによる後者関数であっても極限順序数は可能ですよ
∵シングルトンによる後者関数によって全ての自然数の元が尽くせるなら、それらの元を集めた無限集合たる自然数の集合Nが構成可能であって、それは極限順序数ωでもあるのです!
URLリンク(ja.wikipedia.org)
数学でいう順序数(じゅんじょすう、英: ordinal number)とは、整列集合同士の"長さ"を比較するために、自然数[1]を拡張させた概念である。
ω より小さな順序数(すなわち自然数)を有限順序数と呼び、ω 以上の(すなわち ω と等しいか ω より大きい)順序数を超限順序数と呼ぶ。
S(α) を α の後続者(successor of α)と呼ぶ。
順序数の並び方を次のように図示することができる:
0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω))), ............, ω + ω, S(ω + ω), S(S(ω + ω)), S(S(S(ω + ω))), ..............................
まず、0 が最小の順序数である。その後に S(0) = 1, S(S(0)) = 2, S(S(S(0))) = 3, ... と有限順序数(自然数)が通常の順序で並んでいる。そして、すべての自然数が並び終えると、次に来るのが最小の超限順序数 ω である。ω の後にはまたその後続者たちが S(ω), S(S(ω)), S(S(S(ω))), ... と無限に続いていく。
つづく
798:現代数学の系譜 雑談
20/11/01 23:19:06.74 o4gNmK89.net
>>711
つづき
URLリンク(ja.wikipedia.org)
極限順序数
極限順序数(きょくげんじゅんじょすう、英: limit ordinal)は 0 でも後続順序数でもない順序数を言う。あるいは、順序数 λ が極限順序数であるための必要十分条件は「λ より小さい順序数が存在して、順序数 β が λ より小さい限り別の順序数 γ が存在して β < γ < λ とできることである」と言ってもよい。任意の順序数は、0 または後続順序数、さもなくば極限順序数である。
例えば、任意の自然数よりも大きい最小の超限順序数 ω は、それよりも小さい任意の順序数(つまり自然数)n が常にそれよりも大きい別の自然数(なかんずく n + 1)を持つから、極限順序数である。
URLリンク(ja.wikipedia.org)
自然数(しぜんすう、英: natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。
(引用終り)
なお、これを下記のスレに転載しておきますよ
現代数学の系譜 カントル 超限集合論他 3
スレリンク(math板)
以上
799:特別支援学校教諭
20/11/02 06:18:54.78 PUodusEe.net
>>711
噛んで含める説明
>無限公理の本質は
以下の式の通りですよ
「ある集合Aが存在し、Aは空集合を要素とし
Aの任意の要素xについて、その後者S(x)も要素とする」
∃A({}∈A∧∀x∈A(S(x)∈A))
>それを表現する式のテクニカルな話ではない。
テクニカルな話=後者関数の形体 ということならその通りですね
つまり、後者関数によって生成される集合がシングルトンか否かとは無関係に、
無限公理によって、無限集合(シングルトンに非ず)の存在が前提される
ということです
800:特別支援学校教諭
20/11/02 06:24:44.23 PUodusEe.net
>>711
>後者関数の選び方には、任意性があるが、
>「二階述語論理によって定式化することで、
> ペアノシステムを同型の違いを除いて
> 一意に定めることができる」
それ、「可算無限シングルトン」と無関係ですね
ちなみに一階述語論理では、一意化できません
それがレーヴェンハイム–スコーレムの定理ですね
---------------------------
URLリンク(ja.wikipedia.org)
レーヴェンハイム–スコーレムの定理(英: Löwenheim–Skolem theorem)とは、
可算な一階の理論が無限モデルを持つとき、
全ての無限濃度 κ について大きさ κ のモデルを持つ、
という数理論理学の定理である。
そこから、一階の理論はその無限モデルの濃度を制御できない、
そして無限モデルを持つ一階の理論は
同型の違いを除いてちょうど1つのモデルを持つようなことはない、
という結論が得られる。
801:特別支援学校教諭
20/11/02 06:30:07.90 PUodusEe.net
>>711
>シングルトンによる後者関数であっても極限順序数は可能ですよ
より正確にいえば
「後者関数による後者がシングルトンであっても、極限順序数は生成可能」
で、核心
◆yH25M02vWFhP氏、がいってるのは
「後者関数による後者がシングルトンならば、極限もシングルトン」
ですよね?
それ、間違ってます(・Д・)9 ビシッ!
後者関数がいかなるものであっても、
無限公理で定められるωは無限集合(正確には可算無限集合)
802:特別支援学校教諭
20/11/02 06:37:29.51 PUodusEe.net
>>711
大事なことなので繰り返しますね
>シングルトンによる後者関数によって全ての自然数の元が尽くせるなら、
>それらの元を集めた無限集合たる自然数の集合Nが構成可能であって、
>それは極限順序数ωでもあるのです!
ええ、その通りですよ。で、
N(=ω)は全ての自然数{}、{{}}、{{{}}}、…を集めた無限集合なんでしょう?
だから、N(=ω)はシングルトンではないですね
具体的に書けば{{},{{}},{{{}}},…}です
決して{…{{{}}}…}ではありません
803:特別支援学校教諭
20/11/02 06:41:54.80 PUodusEe.net
>>712
>なお、これを下記のスレに転載しておきますよ
転載するなら>>713-716でお願いします
特に>>716は◆yH25M02vWFhP氏が
自分の主張を完全否定する文章を
コピペした決定的証拠なので
あなたが忘れないために
必ず実施してくださいね
「ωは可算無限シングルトン」の誤りの矯正指導については以上で終了します
・・・あなたが誤りを認めれば
804:現代数学の系譜 雑談
20/11/02 07:06:47.73 YSe1lExr.net
>>711 補足
1.自然数のノイマン構成(>>706)で、”無限公理”を適用して、可算無限集合 つまりは自然数の集合N(順序数ω)が構成できたとする
2.0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω))), ............, ω + ω, S(ω + ω), S(S(ω + ω)), S(S(S(ω + ω))), .............................. となる
3.ここに、後者関数 S(α) := SN(α) ノイマン構成の後者関数である
4.さて、後者関数を S(α) := SZ(α) シングルトンによる後者関数(Zermelo)に置き換えても、上記2と同じことが言える
5.これを担保するのが、「レーヴェンハイム=スコーレムの定理:一階述語論理で定式化されたペアノの公理は、無数の超準モデルを持つ」(>>706)ってことです
なお、これらを下記のスレに転載しておきますよ
現代数学の系譜 カントル 超限集合論他 3
スレリンク(math板)
以上
805:特別支援学校教諭
20/11/02 07:59:12.94 PUodusEe.net
>>711
>「二階述語論理によって定式化することで、ペアノシステムを同型の違いを除いて一意に定めることができる」
>>718
>「レーヴェンハイム=スコーレムの定理:一階述語論理で定式化されたペアノの公理は、無数の超準モデルを持つ」
どっちも、後者関数をどう設定するかとは無関係ですけどね
つまり後者関数を決めたところで、どっちもいえます
「後者関数の任意性」とは無関係です
で、シングルトンによる後者関数(Zermelo)を選んでも
ωはシングルトンにはなりません
じゃ、これもあのスレッドに記録しておきますね(にっこり)
806:現代数学の系譜 雑談
20/11/02 11:25:11.78 o7WhIP+j.net
IUTに関連するので、少しだけ
維新さん、いやさおサルは、抽象化された現代数学が分かってないね
現代数学が理解できていないと言った方がいいかもね
抽象化された現代数学では、その殆どの対象が抽象的な思念の中でしか存在しない
例えば、IUTしかり。下記のIUT記事で、望月教授がスピロ予想を
807:、”「フロベニオイド」と呼ばれる自らが生み出した新たなレヴェルの数学的概念へ変換した”とあるよね あなた、”「フロベニオイド」など存在しな~い!”などと絶叫しているに等しい つまり、「フロベニオイド」という存在は、望月教授の思念から生み出されたのです そんなものは、それまでは 存在していなかった と同様に、Zermelo先生は「シングルトン使って、自然数の構成を考えてみるべ」といった(>>706の通り) Zermelo先生は、当然カントールの順序数ωもご存知だった 批判されたのは、「シングルトン使ったら、出来る集合の濃度は常に1だ。順序数は良いけど、基数はどうするんだ?」と まあ、基数は、それまでに出来たシングルトンを全部集めた集合で作るのが一案。n:={0,1,・・,n-1}の如くね(これで濃度はnになる) で、全ての自然数からなる無限集合N:={0,1,・・,n,・・}てこと。これアレフ0です じゃあ、Zermelo先生流のシングルトンによる順序数ωは? 条件1)このとき、当然ωの濃度は1でなければならない ∵シングルトンだから 条件2)そして、順序数ωは全ての自然数の後に来る最初の極限順序数であること この二つの条件1)2)を見たすωが存在してはいけないのか? いけない積極的理由がなければ、数学では存在しうる ∵現代数学では 抽象的な思念として存在しうるならOK! (「フロベニオイド」に同じ) QED 以上 つづく
808:現代数学の系譜 雑談
20/11/02 11:26:09.03 o7WhIP+j.net
>>720
つづき
(参考)
URLリンク(wired.jp)
WIRED
「異世界からきた」論文を巡って: 望月新一による「ABC予想」の証明と、数学界の戦い
[15年12月21日のQuanta Magazine掲載の記事を翻訳・転載]
2016.07.06 WED 18:30
アンドリュー・ワイルズが1994年に「フェルマーの最終定理」を証明したとき、彼はまさにこの戦略を取った。「2より大きい整数(n)に関して等式『 a^n+b^n = c^n 』を成立させる正の整数の解はない」という問題をただシンプルな等式のまま扱うのではなく、二度の変換を通してより抽象的な定式化を行ったのだ。一度目は楕円曲線で、二度目が楕円曲線の「ガロア表現」と呼ばれる別の数学的手法である。こうして、彼はフェルマーの定理の証明に成功した。
望月教授も同様の戦略を採っている。ABC予想を直接証明するのではなく、スピロ予想の証明にまず着手した。その証明を行うためにまず、スピロ予想の関連のあるすべての情報を「フロベニオイド」と呼ばれる自らが生み出した新たなレヴェルの数学的概念へ変換した。
URLリンク(ja.wikipedia.org)
順序数
URLリンク(ja.wikipedia.org)
基数(きすう、cardinal number又はcardinal)とは、集合の濃度 (cardinality) (大きさ、サイズ)を測るために定義された自然数の一般化である。
有限集合の濃度つまり有限集合の要素の個数は自然数で表される。
無限集合の濃度が一つではないことはゲオルグ・カントールによって示された。
(引用終り)
以上
809:特別支援学校教諭
20/11/02 11:46:29.58 PUodusEe.net
>>720
IUTには直接関係しませんが
フロベニオイド云々もシングルトンの件も
あなたは「書いてないことを読み取った」点で
同じです
>Zermelo先生流のシングルトンによる順序数ωは?
>条件1)このとき、当然ωの濃度は1でなければならない ∵シングルトンだから
これが「書かれてないことを読み取った」誤りです
Zermeloは、xの後続は{x}だと定義したにすぎません
つまり、上記の定義では、
いかなる順序数の後続でもない極限順序数については
何も決められていません
>条件2)そして、順序数ωは全ての自然数の後に来る最初の極限順序数であること
「全ての自然数の後に来る」では意味をなさないので
以下のように書きましょう
「そして、順序数ωは、任意の自然数nについて
ωからnに至る∋(有限)降下列を持つこと」
結果として、ωは自然数の無限集合でなくてはなりません
>この二つの条件1)2)を見たすωが存在してはいけないのか?
いけません
ωはシングルトンどころか有限集合ですらありません
�
810:ネぜならωが自然数の有限集合である場合、 その最大の要素mより大きい自然数nについては ωからnへの∋(有限)降下列をもたないからです いけない絶対的理由があるので、ωはシングルトンとしては存在しません 無限集合なら、問題ありませんが #フロベニオイドについてはとりあげません #そもそも◆yH25M02vWFhP君は理解してないでしょ #円分体の自己同型も理解してませんでしたからね
811:現代数学の系譜 雑談
20/11/02 17:17:40.88 o7WhIP+j.net
>>720
(引用開始)
で、全ての自然数からなる無限集合N:={0,1,・・,n,・・}てこと。これアレフ0です
じゃあ、Zermelo先生流のシングルトンによる順序数ωは?
条件1)このとき、当然ωの濃度は1でなければならない ∵シングルトンだから
条件2)そして、順序数ωは全ての自然数の後に来る最初の極限順序数であること
この二つの条件1)2)を見たすωが存在してはいけないのか?
いけない積極的理由がなければ、数学では存在しうる
∵現代数学では 抽象的な思念として存在しうるならOK! (「フロベニオイド」に同じ)
QED 以上
(引用終り)
補足する
上記のような集合ω、濃度は1(=つまりシングルトン)で
Zermelo先生流のシングルトンによる自然数の構成中で、
全ての有限順序数の後で、かつ 最小の超限順序数
つまりは、「任意の自然数よりも大きい最小の超限順序数」(>>712)なる集合としてのωの存在
これを数学的に否定できない
(つまりは、「こういうωは矛盾を生じるので存在しえない」ことを証明できない)ならば
そのような、シングルトンの集合ωは存在しうる!!
これが、抽象化された現代数学の結論ですよ
812:特別支援学校教諭
20/11/02 17:27:45.50 PUodusEe.net
>>723
>上記のような集合ω、濃度は1(=つまりシングルトン)で
誤りです
背理法で証明しましょう
ωがシングルトンだとしましょう
その要素となる自然数mが何であれ、m<nとなる自然数nが存在します
そして、そのようなnについてはωからの∋降下列が存在しません
したがってωが全ての自然数より大きい順序数であることと矛盾します
これは完璧な数学的否定です
したがってωは存在しますが、シングルトンではありません
これが、論理に基づく現代数学の結論です
813:特別支援学校教諭
20/11/02 17:39:59.82 PUodusEe.net
>>723
>現代数学では 抽象的な思念として存在しうるならOK!
「抽象的な思念」としてすら存在し得ないと論理的に証明できるのでNGです
>>724を理解できるまで読み返してください
814:現代数学の系譜 雑談
20/11/02 17:48:55.81 o7WhIP+j.net
>>723
補足の補足
上記>>723は、私の独創でもなんでもない
単に>>706に書かれていることを
小学生にも分かるように解説しただけのことです
それが分からないならば
抽象化された現代数学はムリ!
従って
IUTなど夢のまた夢
(参考)
>>706より
(再録)
URLリンク(ja.wikipedia.org)
ペアノの公理
N を自然数全体の集合といい、これは時々(特に順序数に関する文脈で)ギリシャ文字の ω と表記される。
この構成法はジョン・フォン・ノイマンによる[1] 。
これは可能なペアノシステムの構成法として唯一のものではない。
一階述語論理で定式化されたペアノの公理は、無数の超準モデルを持つ。(レーヴェンハイム=スコーレムの定理)
二階述語論理によって定式化することで、ペアノシステムを同型の違いを除いて一意に定めることができる[2]。
URLリンク(ja.wikipedia.org)
自然数
URLリンク(ja.wikipedia.org)
自然数
集合論において標準的となっている自然数の構成は以下の通りである。
(上記のノイマン構成法で略す)
例えば、0 := {}, suc(a) := {a} と定義したならば、
0 := {}
1 := {0} = {{}}
2 := {1} = {{{}}}
3 := {2} = {{{{}}}}
と非常に単純な自然数になる。
(注:これがシングルトンによる自然数構成)
(引用終り)
以上