20/10/25 19:37:18.79 eIdDsFH8.net
>>602
>>q-parameters
>モジュラー形式のq-展開 q = exp(2πiz) と同様か
補足
モジュラリティ定理 q=e^{2πiτ}
「N がそのようなパラメタ表示の中で最小の整数(モジュラリティ定理自体により、導手という数値として知られる)」
URLリンク(ja.wikipedia.org)
谷山?志村予想
(抜粋)
谷山・志村予想は、「すべての有理数体上に定義された楕円曲線はモジュラーである」という主張であり、アンドリュー・ワイルズとその弟子クリストフ・ブロイル(英語版)、ブライアン・コンラッド(英語版)、フレッド・ダイアモンド(英語版)、リチャード・テイラーらによって証明された。
今日ではモジュラー性定理またはモジュラリティ定理 (modularity theorem) と呼ばれ、数論における一つの帰結と考えられている。ワイルズは半安定楕円曲線における谷山・志村予想を証明することで、フェルマーの最終定理も証明した。
谷山・志村予想の内容
谷山・志村予想とは、任意の Q 上の楕円曲線は、ある整数 N に対する古典的モジュラー曲線(英語版)(classical modular curve)
X_0(N)
からの整数係数を持つ有理写像(英語版)(rational map)を通して得ることができる。この曲線には明示的に定義が与えられ、整数係数を持つ。Level N のモジュラのパラメタ表示と呼ばれる。N がそのようなパラメタ表示の中で最小の整数(モジュラリティ定理自体により、導手という数値として知られる)であれば、このパラメタ表示は、Weight 2 とLevel N の特殊なモジュラ形式、すなわち、(必要であれば同種に従い)正規化された 整数のq-展開をもつ新形式(英語版)(newform)の生成する写像として、定義される。
モジュラリティ定理は、次の解析的なステートメントと密接に関連する。Q 上の楕円曲線 E に楕円曲線のL-函数を対応させる。このL-函数は、ディリクレ級数であり、
L(s,E)=Σ _{n=1}-{∞} {a_n}/{n^s}
と表すことができる。
従って、係数 a_n}a_n の母函数は、
f(q,E)=Σ _{n=1}-{∞ } a_n q^n}
である。
q=e^{2πiτ}
を代入すると、複素変数 τ の函数 f(τ ,E) のフーリエ展開の形に書くことができ、従って、q-展開の係数は f のフーリエと考えることができる。
つづく