20/10/25 10:36:05.31 eIdDsFH8.net
>>592
"Szpiro Conjectures. In this case, the height of a rational point may
be thought of as a suitable weighted sum of the valuations of the q-parameters of
the elliptic curve determined by the rational point at the nonarchimedean primes of potentially multiplicative reduction [cf. the discussion at the end of [Fsk], §2.2; [GenEll],”
”q-parameter”:多分下記の楕円テータ関数 「q = e^2πiτ」だろうね(^^;
URLリンク(member.ipmu.jp)
Yuji Tachikawa 立川裕二
URLリンク(member.ipmu.jp)
List of lectures
(抜粋)
・2016年10月 場の量子論の数学と二次元四次元対応 (第67回「数学との遭遇」中央大) [詳細]
・2012年5月 数学者のための場の理論 (駒場) [講義ノート]
・2012年10月 数学者のための超対称場の理論 (京都大) [講義のページ]
URLリンク(member.ipmu.jp)
URLリンク(member.ipmu.jp)
物理数学II (2014)講義ノート
(抜粋)
P14
楕円テータ関数
昔は q = e^πiτ
最近は (すくなくとも純粋数学および弦理論では)
q = e^2πiτ。
Mathematica はまだ前者の定義。
URLリンク(ja.wikipedia.org)
テータ関数
楕円テータ関数の定義
楕円テータ関数(だえんテータかんすう、英: elliptic theta function)は、以下のように定義された関数である[10][9]。 ただし、Im τ >0, q:=e^πiτ である。
(引用終り)
以上