20/10/24 19:00:33.22 i6I9Q5ne.net
メモ貼る
URLリンク(ja.wikipedia.org)
導手
原文と比べた結果、この記事には多数(少なくとも 5 個以上)の誤訳があることが判明しています。情報の利用には注意してください。
正確な語句に改訳できる方を求めています。
(抜粋)
代数的整数論で、局所体や大域体の有限次アーベル拡大の導手(conductor)は、拡大の分岐を定量的に測るものである。導手の定義はアルティン写像に関連がある。
局所導手
拡大の導手は分岐を測る。定量的には、拡大が不分岐であることと、導手が 0 であることとは同値であり[3]、(拡大が)おとなしい分岐(英語版)(tamely ramified)であることと、導手が 1 であることとは同値である[4]。さらに詳しくは、導手は高次分岐群(英語版)(higher ramification group)の非自明性を測ることができる
例
基礎体を有理数体とすると、クロネッカー・ウェーバーの定理は、代数体 K が Q のアーベル拡大であることと、ある円分体 Q(ζn) の部分体であることが同値であることを言っている[15]。従って、K の導手はそのようなものの中で最も小さな n である。
局所導手や分岐との関係
大域導手は局所導手の積である。[17]
結局、有限