IUTを読むための用語集資料集スレat MATH
IUTを読むための用語集資料集スレ - 暇つぶし2ch428:現代数学の系譜 雑談 ◆yH25M02vWFhP
20/08/08 21:52:18 wEGnwISi.net
>>386
つづき

Q の絶対 Galois 群 GQ = Gal(Q ̄ /Q)とは, Q の代数閉包 Q ̄ の自己同型群 Aut(Q ̄ ) の
ことである. 素数 に対し, GQ の l進表現とは l進体 Q 上の有限 (n) 次元線型空間 V
への連続表現 GQ → GLQl (V )(=~ GLn(Ql)) のことをいう. 素数は S の点を表わすとき
には文字 p を使い, S 上の局所系の係数体を表わすときは を使う習慣となっている.
l進表現だけでは, 無限素点の扱いかたが不十分なので, さらにこれと対応する Hodge 構
造と対にして考える必要がある [5].

有理数体上定義された代数多様体や, 保型形式などに対し, Galois 群 GQ の l進表現
(と Hodge 構造の対) を対応させることができる.
代数多様体, 保型形式 ⇒ l進表現 (+ Hodge 構造).
このような対応により, 有理数体上の代数幾何的あるいは表現論的対象を, より線型代
数的な対象である l進表現をつかって調べることができる. またその逆に, Galois 表現
という数論的に重要な対象を, 幾何的な方法や表現論的な方法をつかって調べることも
できる. 代数多様体の例として Fermat 曲線をとると, 上のものになる.
実際に Galois 表現を構成する手段は, おもにエタール・コホモロジーである.

1. E を有理数体 Q 上定義された楕円曲線とする.
Tate 加群 TE = lim←? nKer(n :E(Q ̄ ) → E(Q ̄ )) は,
階数 2 の自由 Z-加群であり, 自然な Galois 群 Gal(Q ̄ /Q) の表現を
もつ. E のエタール・コホモロジー H1(EQ ̄ , Q) は, 双対空間 Hom(TE, Q) と標準同
型である. E(C) を C の格子 T による商 C/T として表わせば, TE =~ T ◯xZ Zl であり,
H1(EQ ̄ , Ql) =~ Hom(T, Ql) である.

有理数体上定義された楕円曲線に対し, 上の例 1 の
ようにしてえられる l進表現が, 例 2 のように保型形式から定まる l進表現であること
を示すことによって, Fermat 予想が解決されたのだった ([8] 参照).

2.4 weight-monodromy 予想

3.1 導手公式.
局所体の l進表現の分岐から生じる不変量のうちで最も基本的なものはその導手と
よばれるものである.

E が楕円曲線のときには, Tate-Ogg の式 [30] と同値である [31].
(引用終り)


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch