20/06/24 23:20:01.80 b5EBywaq.net
>>36
Inter-universal geometry と ABC予想 (応援スレ) 48
スレリンク(math板)
62 名前:現代数学の系譜 雑談 ◆yH25M02vWFhP [] 投稿日:2020/06/18(木) 17:18:11.72 ID:LPUPFt8f [3/4]
>>61
つづき
Contents
1 Notation
2 The algorithm
3 Implementations
Notation
Assume that all the coefficients of the equation of the curve lie in a complete discrete valuation ring R with perfect residue field and maximal ideal generated by a prime π. The elliptic curve is given by the equation
y^2+a1xy+a3y=x^3+a2x^2+a4x+a6.
Define:
a{i,m}=a_{i}/π^m
b2=a1^2+4a2
b4=a1a3+2a4
b6=a3^2+4a6
b8=a1^2a6-a1a3a4+4a2a6+a2a3^2-a4^2
c4=b2^2-24b4
c6=-b2^3+36b2b4-216b6
Δ =-b2^2b8-8b4^3-27b6^2+9b2b4b6
j=c4^3/Δ .
Implementations
The algorithm is implemented for algebraic number fields in the PARI/GP computer algebra system, available through the function elllocalred.
(引用終り)
以上
42:現代数学の系譜 雑談
20/06/24 23:22:53.16 b5EBywaq.net
メモ
Inter-universal geometry と ABC予想 (応援スレ) 47
スレリンク(math板)
110 名前:現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 投稿日:2020/05/28(木) 15:28:24.71 ID:LOTC0/EA
下記 中村 円分指標 Tate 加群 Z?(1)= 星 円分物 Tate 捻り “Zb(1)”か(^^;
前スレ46 スレリンク(math板:695番) より
URLリンク(mathsoc.jp)
日本数学会 代数学分科会 ホームページ
URLリンク(mathsoc.jp)
代数学シンポジウム関連情報
第63回 代数学シンポジウム
2018年9月3日(月)~9月6日(木)
URLリンク(mathsoc.jp)
グロタンディーク・タイヒミュラー理論の話題から 中村博昭(大阪大学理学研究科)
URLリンク(mathsoc.jp)
第63回代数学シンポジウム報告集 - 日本数学会 報告集講演統合版(2019年1月発行)(pdf file)
(*)14:45-15:45 中村 博昭(大阪大学 理学研究科). 「グロタンディーク・タイヒミュラー理論の話題から」
1.1. 円分指標. 最初の重要な関数は 円分指標 χ : GQ → Z?× と呼ばれるもので,1の冪
根 ζn = e2πi/n ∈ Q への GQ の作用を体現する:より正確には,各 σ ∈ GQ に対して
χ(σ) ∈ Z?× を,σ(ζn) = ζχ(σ) mod n n (n ? 1) によって定める.GQ が円分指標倍で作用する
加群 Z? を 1 階の Tate 加群といい,Z?(1) とかく.円分指標は,数論的基本群においては,
代数多様体から因子を取り除いた状況でいたるところで現れる.その理由は典型的な場合
X = Gm = P1 ? {0,∞} をモデルとして説明できる:その数論的基本群 πQ は,ローラン
級数体 ∪nQ((t1/n)) の自己同型のうち, 係数への GQ 作用と,穴の周りを一周するループに
対応する元 x : t1/n → t1/nζ?1n(n ? 1) とで生成される半直積群 πQ = GQ ? ?x? と同一視
され,幾何的基本群 π1 = ?x? ?= Z? への GQ の作用は円分(指標倍による)作用に他なら
ないことが確かめられる (Branch cycle argument). すなわち πQ = GQ ? Z?(1).
つづく
43:現代数学の系譜 雑談
20/06/24 23:26:05.24 b5EBywaq.net
>>38
つづき
前スレ46 スレリンク(math板:685番) より
URLリンク(repository.kulib.kyoto-u.ac.jp)
宇宙際Teichmuller理論入門(On the examination and further development of inter-universal Teichmuller theory)
星 裕一郎 Aug-2019 数理解析研究所講究録別冊 B76
(抜粋)
P83
§ 1. 円分物
この §1 では, その対象の輸送の遂行の際に重要な役割を果たす 円分
物 (cyclotome) という概念についての解説を行います.
円分物とは何でしょうか. それは Tate 捻り “Zb(1)” のことです. 広義には, Zb(1) の
商や, あるいは, “(Q/Z)(1)” という可除な変種も円分物と呼ばれます. 遠アーベル幾何学
において, この円分物の “管理” は非常に重要です. この点について, もう少し説明しましょう.
(引用終り)
冒頭からワカランw(^^;
Tate 捻り “Zb(1)”? 下記かな?
URLリンク(en.wikipedia.org)
Tate twist
(抜粋)
In number theory and algebraic geometry, the Tate twist,[1] named after John Tate, is an operation on Galois modules.
For example, if K is a field, GK is its absolute Galois group, and ρ : GK → AutQp(V) is a representation of GK on a finite-dimensional vector space V over the field Qp of p-adic numbers, then the Tate twist of V, denoted V(1), is the representation on the tensor product V?Qp(1), where Qp(1) is the p-adic cyclotomic character
(i.e. the Tate module of the group of roots of unity in the separable closure Ks of K).
More generally, if m is a positive integer, the mth Tate twist of V, denoted V(m), is the tensor product of V with the m-fold tensor product of Qp(1).
Denoting by Qp(?1) the dual representation of Qp(1), the -mth Tate twist of V can be defined as
V ◯X Q_p(-1)^{◯X m}.
References
'The Tate Twist', in Lecture Notes in Mathematics', Vol 1604, 1995, Springer, Berlin p.98-102
(引用終り)
以上
44:現代数学の系譜 雑談
20/06/25 07:22:39.99 odZewMPY.net
下記 (2015-02)は、目を通しておくと良いと思う
URLリンク(www.kurims.kyoto-u.ac.jp)
望月 出張・講演
URLリンク(www.kurims.kyoto-u.ac.jp)(2015-02).pdf
宇宙際タイヒミューラー理論への誘(いざな)い (2015-02) (京都大学数理解析研究所 2015年02月)
P4 辺りに q^(j^2)の話が出てくる
45:現代数学の系譜 雑談
20/06/26 06:45:35.87 zl2qUDG1.net
>>40
"Hodge Arakelov 基本定理 ガウス積分"
URLリンク(ja.wikipedia.org)
ホッジ・アラケロフ理論
楕円曲線のホッジ・アラケロフ理論は、アラケロフ理論(英語版)(Arakelov theory)のフレームワークで考える p-進ホッジ理論(英語版)(p-adic Hodge thory)の楕円曲線についての類似理論である。ホッジ・アラケロフ理論は、 Mochizuki (1999) で導入された。
望月の主要な結果であるホッジ・アラケロフ理論の比較定理は、(大まかには)標数 0 の滑らかな楕円曲線の普遍拡大上の次数が d 未満の多項式の空間は、自然に d-捩れ点上の函数の d^2-次元空間に(制限によって)同型となるという定理である。
ド・ラームコホモロジーを複素多様体の特異コホモロジーや、p-進多様体のエタール・コホモロジーに関連付けるコホモロジー論の比較定理のアラケロフ理論の類似物である。
Mochizuki (1999) と Mochizuki (2002a)で、彼は数論的小平・スペンサー写像やガウス・マーニン接続(英語版)(Gauss-Manin connection)が、ヴォイタ予想やABC予想などに重要なヒントを与えるのではないかと指摘している。
Mochizuki, Shinichi (2002a), “A survey of the Hodge-Arakelov theory of elliptic curves. I”, in Fried, Michael D.; Ihara, Yasutaka, Arithmetic fundamental groups and noncommutative algebra (Berkeley, CA, 1999), Proc. Sympos. Pure Math., 70, Providence, R.I.: American Mathematical Society, pp. 533?569, ISBN 978-0-8218-2036-0, MR1935421
URLリンク(www.kurims.kyoto-u.ac.jp)
A Survey of the
Hodge-Arakelov Theory of Elliptic Curves I
Shinichi Mochizuki
October 2000
§1.5. Future Directions
§1.5.1 Gaussian Poles and Diophantine Applications
つづく
46:現代数学の系譜 雑談
20/06/26 06:46:07.90 zl2qUDG1.net
>>41
つづき
In some sense, the most fundamental outstanding problem left unsolved in
[Mzk1] is the following:
How can one get rid of the Gaussian poles (cf. §1)?
For instance, if one could get rid of the Gaussian poles in Theorem A, there
would be substantial hope of applying Theorem A to the ABC (or, equivalently,
Szpiro’s) Conjecture.
Section 2: The Theta Convolution
In fact, returning to the theory of the Gaussian on the real line, one may
recall that one “important number” that arises in this theory is the integral of the
Gaussian (over the real line). This integral is (roughly speaking) √π. On the other
hand, in the theory of [Mzk2], Gaussians correspond to “discrete Gaussians” (cf.
[Mzk2], §2), so integrals of Gaussians correspond to “Gauss sums.” That is to say,
Gauss sums may be thought of as a sort of discrete analogue of √π. Thus, the
appearance of Gauss sums in the theory of [Mzk2] is also natural from the point of
view of the analogy of the theory of [Mzk1] with the classical theory of Gaussians
and their derivatives (cf. §1.2).
(引用終り)
以上
47:現代数学の系譜 雑談 ◆yH25M02vWFhP
20/06/26 07:30:43 zl2qUDG1.net
参考
URLリンク(ja.wikipedia.org)
p進数
(抜粋)
有理数の体系を実数や複素数の体系に拡張するのとは別の方法で、各素数 p に対して p 進数の体系が構成される。それらは有理数のつくる空間の局所的な姿を記述していると考えられ、数学の中でも特に数論において重要な役割を果たす。数学のみならず、素粒子物理学の理論などで使われることもある(例えば p 進量子力学を参照)。
「p 進数」とは「2進数」や「3進数」の総称に過ぎないので、文字 p がすでに他の場所で用いられている場合、q 進数や l 進数などと表現されることもある。
なお、自然数や実数を 0 と 1 で表現する方法(2進法)やその結果得られる記号列(2進列)も「2進数」と呼ぶ場合があるが、本項の意味での「2進数」とは異なる。
つづく
48:現代数学の系譜 雑談 ◆yH25M02vWFhP
20/06/26 07:32:59 zl2qUDG1.net
>>43
つづき
概要
有理数体 Q から実数体 R を構成するには、通常の絶対値の定める距離 d∞(x, y) = | x - y | に関して有理数体を完備化するのであった。
それに対し、p 進付値より定まる距離(p 進距離)dp によって有理数体を完備化したものが p 進数体 Qp である。p 進数と実数は異なる特徴を持つ別々の数体系である一方で、数論においては極めて深い関係を持つ対象であると捉えられる。
有理数から実数を構成する過程は、小数展開に循環しない可算無限桁を許すことを意味する。
p 進数体 Qp における小数展開の類似物は p 進展開である。p 進数の中で考えた有理数は p の高い冪を因数に含めば含むほど小さいと考えられ、p 進数の p 進展開は、p 進整数(ぴーしんせいすう、p-adic integer)を可算無限桁の整数と捉える見方を与える。
これにより、実数の場合と並行して、p 進数は有理数の算術まで込めた拡張であることを見ることができる。
実数体 R と p 進数体 Qp をひとまとまりにしたアデールの概念が扱われることもある。
有理数体のアデール AQ は簡単に言えば、実数体 R と全ての素数 p にわたる p 進数体 Qp との位相まで込めた直積である。
有理数体 Q はそのアデール AQ のなかに(対角線に)埋め込むことができる。
有理数体をアデールに埋め込んで考えることは、有理数体を素数(と無限遠)を点とする空間 Spec Z 上の代数関数体として捉えるという視点を与える。
ここでは、Qp は有限素点 p における局所的な振る舞いを、R は無限遠での振る舞いを表すものとして並行に扱われる。このような解析的な取り扱いにおいては、p 進展開はテイラー展開の類似物であると考えられる。
実数体と p 進数体は有理数体の完備化であるが、一般の代数体でも同様の完備化が考えられる。
以上
49:現代数学の系譜 雑談
20/06/27 18:06:58.85 jEjJjPRO.net
「タイヒミュラー空間の基礎のキソ」なるほど
URLリンク(www.math.titech.ac.jp)
川平 友規 Tomoki Kawahira / Department of Mathematics / Tokyo Institute of Technology
URLリンク(www.math.titech.ac.jp)
タイヒミュラー空間の基礎のキソ
名古屋大学大学院多元数理科学研究科
川平 友規
第47回函数論サマーセミナー
2012年8月27日
50:現代数学の系譜 雑談
20/06/27 18:20:32.87 jEjJjPRO.net
これは、あまり関係なさそうだが、貼る
メモ
「複素力学系におけるラミネーション理論 変形と剛性」
URLリンク(www.math.titech.ac.jp)
川平 友規 Tomoki Kawahira / Department of Mathematics / Tokyo Institute of Technology
URLリンク(www.math.titech.ac.jp)
複素力学系におけるラミネーション理論 変形と剛性
1 December 2009
名古屋大学大学院多元数理科学研究科
川平 友規
51:現代数学の系譜 雑談
20/06/27 18:35:51.11 jEjJjPRO.net
URLリンク(bluexlab.tokyo)
bluexlab
2019.10.03 2019.10.04MATH
パーフェクトイド空間(Perfectoid Spaces)とは?理論の概要と参考文献をご紹介【数論幾何の天才Peter Scholze氏の理論】
(抜粋)
「パーフェクトイド空間って一体何?」、「最近、数論幾何の分野でよく聞くパーフェクトイド空間って?」
こんな疑問に大学院でパーフェクトイド空間(Perfectoid Spaces)を研究していた僕がお答えします。
※このブログの他の数学関連の記事と同じように、この記事でも数学的な正確さよりも”なんとなくの雰囲気”重視で書いているため、数学的に不正確な表現や定義があることはご了承ください。
パーフェクトイド空間(Perfectoid spaces)への準備
コホモロジーを使うことで、昔から考えられている数学の問題を”コホモロジーの言葉に変換”して考え直すことができたり、代数幾何だけでなく整数論など他の数学の分野にも応用することができます。
現代の数学(特に、整数論や代数幾何、数論幾何)はこのコホモロジーの研究といっても過言ではないくらいに大切な概念になります。
パーフェクトイド空間(Perfectoid spaces)とは?
これでようやくパーフェクトイド空間の話に戻ってこれます。
代数幾何では多項式で定義された図形をコホモロジーを駆使して研究する分野でした。
パーフェクトイド空間
では、パーフェクトイド空間とは何かと言うと、次のようなp冪の多項式で定義される図形のことを指します。
1/x+p+p2x+……
1/xp+1+px+……
1/xp2+1/xp+……
パーフェクトイド空間では、素数pでたくさん割れる多項式ばかりを考えることになります。
そうすることでいったい何が良いのかと言うと、
パーフェクトイド空間を考えると(使うと)コホモロジーが調べやすくなる
という点が挙げられます。
つづく
52:現代数学の系譜 雑談
20/06/27 18:36:16.82 jEjJjPRO.net
>>47
つづき
パーフェクトイド空間を使うと、コホモロジーが調べやすくなると言いましたが、これはどういう事か簡単に説明します。
冒頭で体の標数の話を出しましたが、代数幾何や数論幾何で図形を考えるとき(=多項式を考えるとき)、その多項式の係数がどの標数の体のものかというのが重要になってきます。
つまり、標数0の体係数の多項式を考えているのか? それとも標数pの体係数の多項式を考えているのか? ということが大事になるということです。
ところがこれがパーフェクトイド空間の場合では標数0だろうと標数pだろうと関係ない(と言うと乱暴ですが、、、)という性質が発見されています。
もう少し言うと、パーフェクトイド空間の世界では標数0の体と標数pの体を同じものとして扱うことができると言うことがScholzeによって証明されています(これはTilting対応と呼ばれています)。
このTilting対応を使うことで今までよりもずっと簡単に、広くコホモロジーを調べることが可能になりました。
パーフェクトイド空間を使うと、コホモロジーが調べやすくなると言いましたが、これはどういう事か簡単に説明します。
冒頭で体の標数の話を出しましたが、代数幾何や数論幾何で図形を考えるとき(=多項式を考えるとき)、その多項式の係数がどの標数の体のものかというのが重要になってきます。
つまり、標数0の体係数の多項式を考えているのか? それとも標数pの体係数の多項式を考えているのか? ということが大事になるということです。
ところがこれがパーフェクトイド空間の場合では標数0だろうと標数pだろうと関係ない(と言うと乱暴ですが、、、)という性質が発見されています。
もう少し言うと、パーフェクトイド空間の世界では標数0の体と標数pの体を同じものとして扱うことができると言うことがScholzeによって証明されています(これはTilting対応と呼ばれています)。
このTilting対応を使うことで今までよりもずっと簡単に、広くコホモロジーを調べることが可能になりました。
パーフェクトイド空間の勉強をしたい方への参考文献
(引用終り)
以上
53:現代数学の系譜 雑談
20/06/27 21:49:52.32 jEjJjPRO.net
>>45 追加
URLリンク(www.math.titech.ac.jp)
川平 友規 Tomoki Kawahira / Department of Mathematics / Tokyo Institute of Technology
URLリンク(www.math.titech.ac.jp)
複素解析特論 I (タイヒミュラー空間入門)
2011年度前期,大学院生対象.
シラバスおよび講義ノートはこちらです:
(第1~6回) URLリンク(www.math.titech.ac.jp)
(第7回~第13回) URLリンク(www.math.titech.ac.jp)
第13回(2011/7/26) 正則2次微分とタイヒミュラーの定理
ベアス埋め込みについて簡単に復習したあと, タ空間に複素構造を導入する方法を説明しました. そのあと,正則2次微分が定めるリーマン面上の葉層構造と, 「アファイン・ストレッチ」による変形として タイヒミュラー写像を導入し,タイヒミュラーの定理を 証明無しで述べました. 最後に簡単なアンケートをとりました. 最後まで授業に出てくれたみなさん, お疲れさま,そしてありがとうございました.
(2011/7/19) 休講
第12回(2011/7/12) ベアス埋め込み
先週やりのこしたタ距離の完備性などを解説し, ベアス埋め込みについて概説しました. タ空間が複素多様体とみなせる,という部分は次回に.
第11回(2011/7/5) フックス群のタイヒミュラー空間と タイヒミュラー距離
フックス群のタ空間を定義し, それがもとのタ空間と同一視できることを確認. それからタ距離を定義しました.
第10回(2011/6/28) タイヒミュラー空間とモジュライ空間
モジュライ空間がタ空間のモジュラー群による商空間 とみなせることをやりました. トーラスのタ空間が上半平面とみなせることを紹介しました.
第9回(2011/6/21) タイヒミュラー空間の定義
まず例外型リーマン面について述べた後, 写像の持ち上げの構成法と写像のホモトピーの定義を確認. 残り15分で,長い道のりでしたが,やっとタ空間を定義しました.
つづく
54:現代数学の系譜 雑談
20/06/27 21:50:11.61 jEjJjPRO.net
>>49
つづき
第8回(2011/6/14) 一意化定理
任意のリーマン面がごく簡単な単連結リーマン面 を自己同型で割った空間としてモデル化できることを示しました.
第7回(2011/6/7) リーマン面の基本群と普遍被覆
与えられたリーマン面にたいし,基本群と普遍被覆(面) を定義しました.とくに,普遍被覆が 連結かつ単連結リーマン面になることを確認しました.
第6回(2011/5/31) ベルトラミ方程式と擬等角写像
まずACL性を使って擬等角写像を定義し,その性質を解説しました. ベルトラミ方程式の解の存在,一意性,連続性(ベルトラミ微分に 解が連続に依存すること)を定理の形で述べました. (時間の都合で,このへんの話はほとんど証明なしで使います.)
第5回(2011/5/24) ベルトラミ微分とベルトラミ方程式
空間のなかに埋め込まれた滑らかな曲面をリーマン面とみなせるか, という問題(ガウス)を紹介し, ベルトラミ方程式,ベルトラミ微分の概念を導入しました.
第4回(2011/5/17) 正則・有理形微分とリーマン・ロッホの定理
タイヒミュラー空間を入れる箱(建物)として, 正則2次微分のなすベクトル空間を導入し, その次元を計算しました.
第3回(2011/5/10) リーマン面での微分・積分 2
一般の(m,n)微分と(1,0)微分の積分を定義し,その意義を解説しました.
第2回(2011/4/26) リーマン面での微分・積分 1
格子によるトーラスの構成について簡単にふれたあと, リーマン面上の正則関数,速度(接)ベクトル,接空間を定義しました. また,リーマン面間の写像にたいし,その微分を定義しました.
第1回(2011/4/19) リーマン面
リーマン面の定義と具体例(リーマン球面,トーラス,アニュラス)をやりました.
(引用終り)
以上
55:現代数学の系譜 雑談
20/06/27 23:01:24.66 jEjJjPRO.net
”Teichmuller space” 良く纏まっている
URLリンク(en.wikipedia.org)
Teichmuller space
The geometric vein in the study of Teichmuller space was revived following the work of William Thurston in the late seventies, who introduced a geometric compactification which he used in his study of the mapping class group of a surface.
Other more combinatorial objects associated to this group (in particular the curve complex) have also been related to Teichmuller space, and this is a very active subject of research in geometric group theory.
Quadratic differentials and the Bers embedding
Main article: Schwarzian derivative
Main article: Bers slice
URLリンク(upload.wikimedia.org)
56:tung.png/220px-Bers-Einbettung.png Image of the Bers embedding of a punctured torus' 2-dimensional Teichmuller space https://en.wikipedia.org/wiki/Moduli_of_algebraic_curves Moduli of algebraic curves つづく
57:現代数学の系譜 雑談
20/06/27 23:02:30.33 jEjJjPRO.net
>>51
つづき
In algebraic geometry, a moduli space of (algebraic) curves is a geometric space (typically a scheme or an algebraic stack) whose points represent isomorphism classes of algebraic curves. It is thus a special case of a moduli space. Depending on the restrictions applied to the classes of algebraic curves considered, the corresponding moduli problem and the moduli space is different. One also distinguishes between fine and coarse moduli spaces for the same moduli problem.
The most basic problem is that of moduli of smooth complete curves of a fixed genus. Over the field of complex numbers these correspond precisely to compact Riemann surfaces of the given genus, for which Bernhard Riemann proved the first results about moduli spaces, in particular their dimensions ("number of parameters on which the complex structure depends").
Genus 1
Main article: Moduli stack of elliptic curves
つづく
58:現代数学の系譜 雑談
20/06/27 23:03:08.86 jEjJjPRO.net
>>52
つづき
Boundary geometry
Here the vertices of the graph correspond to irreducible components of the nodal curve, the labelling of a vertex is the arithmetic genus of the corresponding component, edges correspond to nodes of the curve and the half-edges correspond to the markings.
The closure of the locus of curves with a given dual graph in {\displaystyle {\overline {\mathcal {M}}}_{g,n}}\overline {{\mathcal {M}}}_{{g,n}} is isomorphic to the stack quotient of a product {\displaystyle \prod _{v}{\overline {\mathcal {M}}}_{g_{v},n_{v}}}\prod _{v}\overline {{\mathcal {M}}}_{{g_{v},n_{v}}} of compactified moduli spaces of curves by a finite group.
In the product the factor corresponding to a vertex v has genus gv taken from the labelling and number of markings {\displaystyle n_{v}}{\displaystyle n_{v}} equal to the number of outgoing edges and half-edges at v. The total genus g is the sum of the gv plus the number of closed cycles in the graph.
URLリンク(en.wikipedia.org)
Moduli stack of elliptic curves
(引用終り)
以上
59:現代数学の系譜 雑談
20/06/27 23:11:05.46 jEjJjPRO.net
>>49
下記は参考になるね(いま手元にあるが)
URLリンク(www.math.titech.ac.jp)
川平 友規 Tomoki Kawahira / Department of Mathematics / Tokyo Institute of Technology
URLリンク(www.math.titech.ac.jp)
基礎講座・複素関数(『数学セミナー』2014年4月号~2015年3月号)
複素関数論の基礎から初めて, 後半はリーマン面について解説しました.
第12回( 2015年3月号) 群で作るリーマン面
● 1次分数変換の部分群を複素平面に作用させて, トーラス,格子トーラス, 種数 2 の閉リーマン面を具体的に構成します.
60:現代数学の系譜 雑談 ◆yH25M02vWFhP
20/06/28 13:58:16 bfBvt+85.net
Inter-universal geometry と ABC予想 53 より
スレリンク(math板:966番)
URLリンク(www.jstage.jst.go.jp)
URLリンク(www.jstage.jst.go.jp)
J-STAGEトップ/電子情報通信学会 基礎・境界ソサイエティ Fundament .../6 巻 (2012) 3 号/書誌
ごあいさつ
ABC予想と最後の審判
? Inter-Universalな世界観 ?
白木 善尚
URLリンク(www.jstage.jst.go.jp)
URLリンク(www.ieice.org)
ABC 予想とフーリエ向井変換が切り拓く西暦 2050 年の活性化社会
The Image of Active 2050 Society via the ABC Conjecture and the Fourier Mukai Transform (FMT)
2013 年�
61:@電子情報通信学会総合大会 白木善尚 Yoshinao Shiraki ロードマップ委員会 基礎・境界ソサイエティ The Roadmap Committee, IEICE Engineering Sciences
62:現代数学の系譜 雑談
20/06/28 16:25:58.64 bfBvt+85.net
>>51
>URLリンク(upload.wikimedia.org)
>Image of the Bers embedding of a punctured torus' 2-dimensional Teichmuller space
この図と川平 友規 URLリンク(www.math.titech.ac.jp)
基礎講座・複素関数(『数学セミナー』2014年4月号~2015年3月号)
複素関数論の基礎から初めて, 後半はリーマン面について解説しました.
第12回( 2015年3月号) 群で作るリーマン面
のP80 図7が似ている
基本は同じかも
63:現代数学の系譜 雑談
20/06/28 17:20:05.27 bfBvt+85.net
参考
URLリンク(waseda.pure.elsevier.com)
URLリンク(www.ams.org)
URLリンク(www.ams.org)
CONFORMAL GEOMETRY AND DYNAMICS
An Electronic Journal of the American Mathematical Society
Volume 8, Pages 115?142 (June 8, 2004)
S 1088-4173(04)00108-0
BERS EMBEDDING OF THE TEICHMULLER SPACE ¨
OF A ONCE-PUNCTURED TORUS
YOHEI KOMORI AND TOSHIYUKI SUGAWA
Abstract. In this note, we present a method of computing monodromies of
projective structures on a once-punctured torus. This leads to an algorithm
numerically visualizing the shape of the Bers embedding of a one-dimensional
Teichm¨uller space. As a by-product, the value of the accessory parameter of
a four-times punctured sphere will be calculated in a numerical way as well
as the generators of a Fuchsian group uniformizing it. Finally, we observe the
relation between the Schwarzian differential equation and Heun’s differential
equation in this special case.
URLリンク(arimoto.lolipop.jp)
Introduction to Teichm¨uller Spaces
Jing Tao
Notes by Serena Yuan
URLリンク(www.acadsci.fi)
Annales Academia Scientiarum Fennica
Mathematica
Volumen 24, 1999, 305?342
THE OUTSIDE OF THE TEICHMULLER SPACE OF ¨
PUNCTURED TORI IN MASKIT’S EMBEDDING
Jouni Parkkonen
Universityof Jyv¨askyl¨a, Department of Mathematics
つづく
64:現代数学の系譜 雑談
20/06/28 17:20:30.55 bfBvt+85.net
>>57
つづき
URLリンク(www.maths.gla.ac.uk)
TOY TEICHMULLER SPACES OF REAL DIMENSION 2:
THE PENTAGON AND THE PUNCTURED TRIANGLE
YUDONG CHEN, ROMAN CHERNOV, MARCO FLORES, MAXIME FORTIER BOURQUE,
SEEWOO LEE, AND BOWEN YANG
ABSTRACT. We study two 2-dimensional Teichmuller spaces of surfaces with
boundary and marked points, namely, the pentagon and the punctured triangle.
We show that their geometry is quite different from Teichmuller spaces of closed
surfaces. Indeed, both spaces are exhausted by regular convex geodesic polygons
with a fixed number of sides, and their geodesics diverge at most linearly.
URLリンク(en.wikipedia.org)
Orbifold
URLリンク(webcache.googleusercontent.com)
Orbifold のトポロジーと幾何学 pantodon.shinshu-u.ac.jp ? topology ? literature ?
以上
65:現代数学の系譜 雑談
20/06/28 23:08:29.13 bfBvt+85.net
メモ貼る
大学のテキストなどが望ましいが、とりあえず
URLリンク(tkenichi.hatenablog.jp)
tkenichi の日記
2014-01-12
穴あき曲面の展開
閉曲面(いわゆる境界のないコンパクトな曲面)の分類はよく知られていて、曲面に切れ目を入れて展開した多角形を張り合わせることで表現することができる。向き付け可能な場合は球面またはg個のトーラスの連結和として表すことができ、多角形の張り合わせで表現する場合は、以下のようになる。
向き付け不可能な場合は、射影空間のk個の連結和としてあらわすことができる。多角形の張り合わせで表現する場合は、以下のようになる。
さて、閉曲面から開円板を取り除いた境界つきの曲面の多角形表現を考えよう。ここでは、展開した多角形の頂点(張り合わせたときに曲面上の1点になる)を含むように開円板をとる。すなわち、開円板の境界が展開した多角形のすべての辺と交叉する場合を考える。向き付け可能な場合は以下のようになる。
向き付け不可能な場合は以下のようになる。
曲面 オイラー数 多角形展開した時の辺の個数
g 個のトーラスの連結和 2-2g 4g
k 個のトーラスの連結和 2-k 2k
g 個のトーラスの連結和から開円板を除いたもの 1-2g 8g
k 個のトーラスの連結和から開円板を除いたもの 1-k 4k
拡張された三角形分割の個数を数えるには、境界つきの曲面の多角形表現で、境界上にすべての頂点があるような場合で、展開した多角形を平面上の三角形分割すればよい。ただし、重複するものが現れるので、それを除く必要がある。
66:現代数学の系譜 雑談
20/06/28 23:13:32.07 bfBvt+85.net
メモ
URLリンク(ja.wikipedia.org)
ポワンカレ計量
二次元の負曲率一定曲面を記述する計量テンソルである。この計量は、双曲幾何やリーマン面において様々な計算を展開する際に広く用いられる。
二次元の双曲幾何の表現には、互いに同値な三種類がよく用いられる。
ひとつは上半平面上の双曲空間のモデルを与えるポアンカレ上半平面模型、
もうひとつは単位円板上の双曲空間のモデルを与えるポアンカレ円板模型であり、
このふたつは等角写像(共形写像)およびメビウス変換によって与えられる等距写像によって関連付けられる。
いまひとつの表現は穴あき円板上のもので、その関係性はq-類似によっても表される。以下これらについて述べる。
目次
1 リーマン面上の計量についての概観
2 ポアンカレ平面上の計量と体積要素
3 平面から円板への等角写像
4 ポアンカレ円板上の計量と体積要素
5 穴あき円板模型
6 シュヴァルツの補題
穴あき円板模型
上半平面から円板への写像でもう一つ広く用いられるものが、q-写像
q=exp(iπτ)
である。ここに q はノームで τ は半周期比を表す。
前節での記法を用いれば、τ は上半平面 Im?τ における座標である。
q = 0 はこの写像の像に含まれないから、この写像は穴あき円板に値を取るものになっていることに注意。
67:現代数学の系譜 雑談
20/06/29 07:17:58.73 zK2xtwvj.net
>>60
追加
これは知っておいた方がいいかも
URLリンク(ja.wikipedia.org)
ポワンカレ計量
(抜粋)
3 平面から円板への等角写像
ポアンカレ上半平面はポアンカレ円板上にメビウス変換
w=e^{iΦ} {z-z_0}/{z-z ̄_0}
によって等角的に写すことができる。ここで w は、上半平面上の点 z に対応する単位円板上の点である。
この写像において、定数 z0 は上半平面上の任意の点とすることができる(この点が単位円板の中心に写る)。
実軸 Im?z =0 は単位円板の周 |w| = 1 に写る。また、実定数 φ は任意に決まった量だけ円板を回転させるため�
68:ノ用いられる。 虚数単位 i を円板の中心に、0 を円板の最下点に写す標準写像(標準座標系)は w= {iz+1}/{z+i} で与えられる。
69:現代数学の系譜 雑談
20/06/29 07:29:59.79 zK2xtwvj.net
上半平面 H は、良く出てくる
双曲幾何と関連しています
URLリンク(ja.wikipedia.org)
ポワンカレの上半平面モデル
半平面模型の星型正七角形による敷詰
URLリンク(upload.wikimedia.org)
非ユークリッド幾何学におけるポワンカレ半平面模型(はんへいめんもけい、英: Poincare half-plane model)は、上半平面(以下 H と記す)にポワンカレ計量と呼ばれる計量をあわせて考えたもので、二次元双曲幾何学のモデルを形成する。
名称はアンリ・ポワンカレに因むものだが、そもそもはベルトラミが、クライン模型・(リーマンによる)ポワンカレ円板模型とともに、双曲幾何学がユークリッド幾何学に無矛盾等価(英語版)であることを示すために用いたものである。円板模型と半平面模型とは共形写像のもとで同型である。
目次
1 対称性の群
2 等距対称性
3 測地線
対称性の群
射影線型群 PGL(2,C) はリーマン球面に一次分数変換で作用する。この群の部分群で上半平面 H を H 自身の上に移すものは、すべての係数が実数であるような変換全体の成す群 PSL(2, R) で、その作用は上半平面上推移的かつ等距ゆえ、上半平面はこの作用に関する等質空間となる。
つづく
70:現代数学の系譜 雑談
20/06/29 07:30:36.01 zK2xtwvj.net
>>62
つづき
上半平面に一次分数変換で作用し、かつその双曲距離を保つリー群としては、近しい関係にあるものが4つ存在する。
・特殊線型群 SL(2, R): 成分が実数の 2 × 2-行列でその行列式が 1 であるもの全体の成す群。多くの文献で、実際には PSL(2, R) を意味するところをしばしば SL(2, R) と言っている場合があるので注意。
・群 S*L(2, R): 成分が実数の 2 × 2-行列でその行列式が 1 または ? 1 であるもの全体の成す群。SL(2, R) はこの群の部分群である。
・射影特殊線型群 PSL(2, R) = SL(2, R)/{±I}: SL(2, R) に属する行列を単位行列の ±1-倍を掛ける違いを除いて考えた同値類全体の成す群。
・群 PS*L(2, R) = S*L(2, R)/{±I} = PGL(2, R): 群 S*L(2, R) に属する行列を同様に単位行列の ±1-倍を掛ける違いを除いて考えた同値類全体の成す群はそれ自身射影群である。PSL(2, R) は指数 2 の正規部分群を含み、それによるその部分群自身とは異なるもう一方の剰余類は、成分が実数の 2 × 2-行列で単位行列の ±1-倍を掛ける違いを除いてその行列式が ?1 となるもの全体の成す集合である。
ポワンカレ模型におけるこれらの群の関係は以下のようなものである。
・しばしば Isom(H) と書かれる H の等距変換全体の成す群は PS*L(2,R) に同型である。これは向きを保つものも逆にするものも含まれている。向きを逆にする変換(ミラー変換)は z→ -z ̄ である。
・しばしば Isom+(H) と書かれる H の向きを保つ等距変換全体の成す群は PSL(2, R) に同型である。
等距変換群の重要な部分群にフックス群がある。
モジュラー群 SL(2,Z) を考えることもよくある。この群は二つの面で重要である。ひとつは、それが 2 × 2 の格子点の成す正方形の対称性の群であり、したがってモジュラー形式や楕円函数のような正方格子上に周期を持つ函数には、その格子から SL(2, Z)-対称性が継承されることである。もうひとつは、SL(2, Z) はもちろん SL(2,R) の部分群なので、その双曲的振舞いも持っていることである。特に SL(2, Z) は双曲平面を等価なポワンカレ領域の胞体に分割することができる。
(引用終り)
以上
71:ID:1lEWVa2s
20/06/29 15:32:48.84 gnlHkMTE.net
どいつもこいつも0でごまかすような。
72:現代数学の系譜 雑談
20/06/30 23:24:25.70 ult3TIYS.net
URLリンク(language-and-engineering.hatenablog.jp)
主に言語とシステム開発に関して
数学の「ABC予想」の証明の
73:原論文PDFと,わかりやすい解説資料。「宇宙際タイヒミュラー理論」 数学 数論 予想や未解決の難問 講義ノート
74:現代数学の系譜 雑談
20/06/30 23:29:09.05 ult3TIYS.net
URLリンク(blog.livedoor.jp)
【数学】ABC予想ニュース【最新情報】
2018年01月24日
宇宙際タイヒミュラー理論のまとめWiki
(2018.1.24更新)
75:現代数学の系譜 雑談
20/07/01 07:34:57.77 ccoy8kKe.net
星裕一の論文
宇宙際 Teichmuller 理論入門 PDF (2019) (Indexあり)URLリンク(repository.kulib.kyoto-u.ac.jp)
(抜粋)
P177
§ 27. まとめ
最後に, 本稿で行われた議論を, 後半で説明した “Hodge 劇場の構成” の観点からまとめて, 本稿を終えましょう:
・ ある Diophantus 幾何学的定理 (§4 の冒頭で述べた主張を参照) を証明するためには,
(a) 対数殻
(b) 楕円曲線の q パラメータの (1 より大きい) ある有理数による巾
(c) 数体
という 3 つの対象の (ある適切な設定における) 多輻的な表示 の存在を証明すれば充分である.
(§4 から §8 の議論や §12 の議論の一部を参照.)
・ (b) と (c) の多輻的な表示を得るためには, 正則構造から単解構造への移行によって生じる不定性から,
(b) と (c) を防護/隔離しなければならない.
そのために, (b) と (c)を, “ただの数” としてではなく “ある適切な関数の特殊値” として扱う.
そのような関数として, (b) に対してテータ関数, (c) に対して “k 系関数” が用いられる.
(§11 の議論を参照.)
・ テータ関数に代入するべき点たちの内, 我々の議論において重要となるものは,
LabCusp±K~= Fl という集合の元たちで自然にラベル付けされる. j ∈ Fl に対して, j でラ
ベル付けされた点でのテータ関数の値は - Fl = {-l*, . . . , 0, . . . , l*} という自然な
同一視のもと - “μ2l・ qj2/2l” の元となる. (§13 や §18 や §19 の議論を参照.)
・ 上述の各 j ∈ Fl での特殊値に関する考察から, F×l = Fl \ {0} でラベル付けされ
た点での特殊値によって (b) が得られ, そして, 0 ∈ Fl でラベル付けされた点での代入に
よってある単数的加群 “O×μv” が得られることがわかる. この単数的加群は, 後に, 対数写
像 “O×μv~→ (Fv)+” を通じて, (b) (や (c)) に対する適切な “入れ物” としての (a) となる.
(§19 や §20 の議論や §8 や §9 の議論の一部を参照.)
・ 考察しなければならない様々な局所的な状況におけるテータ関数の特殊値や代入
点を大域的に管理するために, 局所的な設定と大域的な設定とを関連付けなければならない.
(§19 の議論を参照.)
つづく
76:現代数学の系譜 雑談
20/07/01 07:36:09.51 ccoy8kKe.net
>>67
つづき
・ また, 上述のように, F×l = Fl \ {0} の元での特殊値として得られる (b) を, 0 ∈ Fl
での代入によって得られる適切な “入れ物” に収納したい - つまり, F×l の元と {0}
の元を関連付けたい. そのために, AutK(XK) から生じる Fx±l → LabCusp±K という加
法的/幾何学的な対称性をもとに, 局所的な設定と大域的な設定との関連付けを行う. これ
らの結果として構成される概念が, D-Θ±ell Hodge 劇場や Θ±ell Hodge 劇場である.
(§20の議論を参照.)
・ 上述の説明から, 非常に大雑把なレベルでは, D-Θ±ell Hodge 劇場や Θ±ell Hodge
劇場 は,テータ関数, その代入点のラベルの管理, 及び, その特殊値 (つまり, (b)) のため
の “入れ物” (つまり, 最終的には (a) となるもの)のための設定だと考えられる.
・ (c) の多輻的な表示は, Θ±ell Hodge 劇場による Fx±l 対称性を用いたラベルの管
理を破壊してしまわないようなラベルの管理のもとで実現しなければならない. そして,
Θ±ell Hodge 劇場の大域的な部分に現れる数体 (つまり, これまでの議論の “K”) が, 多
輻的に表示されるべき (c) (つまり, これまでの議論の “Fmod”) よりも大きくなってしま
うため, そのラベルの管理は, 数体のこの拡大の降下情報に関連するものでなければなら
ない. また, (c) は最終的に “値群的” かつ “輻的” な対象となるため, そのラベルの管理
は, “単数的” かつ “コア的” なラベルである “0 ∈ Fl” を隔離する形で与えられなければ
ならない. (§21 の議論を参照.)
・ テータ関数の非単数的特殊値は, LabCuspK~= F*l という集合の元たちで自然にラ
ベル付けされる. また, このラベルの集合に関する対称性 F*l → LabCuspK は, 数体の降
下情報に関連する. この乗法的/数論的な F*l 対称性をもとにした, 数体やその上の数論的
直線束たちと, テータ関数の代入点との間の適切なエタール的関連付けが, D-ΘNF Hodge
劇場という概念で実現される. (§18 や §21 の議論を参照.)
つづく
77:現代数学の系譜 雑談
20/07/01 07:36:41.67 ccoy8kKe.net
>>68
つづき
・ それぞれ大域的な設定, 局所的な設定における数体やその完備化たちの復元, 及び,
それらに対する Kummer 理論と両立する形で, 上述のエタール的関連付けをフロベニオ
イドのレベルに持ち上げ, そして, その上, それら数体に関わる設定とテータ関数に関わる
局所的なフロベニオイドとを適切に関連付けることで得られる概念が ΘNF Hodge 劇場
という概念である. (§24 や §25 の議論を参照.)
・ 上述の説明から, 非常に大雑把なレベルでは, D-ΘNF Hodge 劇場や ΘNF Hodge
劇場 は,(c) の多輻的な表示, 及び,
* その (c) と
* (D-Θ±ell Hodge 劇場や Θ±ell Hodge 劇場におけるテータ関数への “代
入” という操作を行うことによって得られる) (a) や (b) との間の関連付けのための設定だと考えられる.
・ 加法的/幾何学的な対称性 Fx±l → LabCusp±K をもとに構成された D-Θ±ell Hodge
劇場や Θ±ell Hodge 劇場と, 乗法的/数論的な対称性 F*l → LabCuspK をもとに構成され
た D-ΘNF Hodge 劇場や ΘNF Hodge 劇場を (対称性の出自の観点からは “非従来的な
形” で) 貼り合わせることで得られる概念が, D-Θ±ellNF Hodge 劇場や Θ±ellNF Hodge
劇場である. (§26 の議論を参照.)
・ 2 つの Θ±ellNF Hodge 劇場を - それぞれの下部 D-Θ±ellNF Hodge 劇場の間
の同型のもと - 部品である様々な Frobenius 的 “OΔv” の間の (無限素点の場合の説
明は省略, 有限素点の場合には) “OΔv ⊇ O×v O×μv = Fev ⊇ OeΔv~→ OΔv” という関係で
貼り合わせることによって得られる結び付きが, 対数リンクである.
(§9 や §26 の議論を参照.)
つづく
78:現代数学の系譜 雑談
20/07/01 07:37:12.47 ccoy8kKe.net
>>69
つづき
・ 対数リンクによって, 単数的乗法的加群 “O×μv” を, (a) というコンパクトな加法的
加群に変換することができる. しかも, それは (b) や (c) の “入れ物” となる.
(§8 や §9の議論を参照.)
・ 一方, “対数写像は正則構造に依存する” という事実によって, (単一の) 対数リンク
による直前の (a) という “入れ物” は, 正則構造と両立しないリンクに対する両立性を持
たない. この問題を回避するために, 対数リンクの無限列から生じる “Frobenius 的対数
殻の対数写像による関係の無限列とそれぞれ Frobenius 的対数殻とエタール的対数殻の間
の Kummer 同型” の総体である, 対数 Kummer 対応 を考えなければならない.
(§9 や§10 の議論を参照.)
・ エタール的部分の不定性や対数殻の Kummer 同型に付加されてしまう不定性に
よって, (a) の多輻的な表示を得るためには, (a) に対するそれぞれ (Ind1), (Ind2) という
不定性を許容しなければならない. また, さきほどの対数 Kummer 対応が上半両立性を
満たすことしか確認することができないという事実によって, (a) の多輻的な表示を得る
ためには, (a) に対する (Ind3) という不定性を許容しなければならない. (§10 の議論を参照.)
・ これまで考察/構成を行ってきた様々な概念を用いることで, (Ind1), (Ind2),
(Ind3) という不定性 のもと, (ある適切な設定において)
(a) 対数殻
(b) 楕円曲線の q パラメータの (1 より大きい) ある有理数による巾
(c) 数体
を 多輻的に表示 することができる.
謝辞
(引用終り)
以上
79:現代数学の系譜 雑談
20/07/01 17:58:24.08 k+r32g6d.net
>>67 追加
星裕一の論文
宇宙際 Teichmuller 理論入門 PDF (2019) (Indexあり)URLリンク(repository.kulib.kyoto-u.ac.jp)
(抜粋)
P81
本稿の構成は, おおまかには以下のようになっています:
? §1 から §3: 宇宙際 Teichm¨uller 理論において遠アーベル幾何学がどのような形で
用いられるか, という点についての説明.
? §4 から §12: ある Diophantus 幾何学的帰結 (§4 の冒頭を参照) を得るために, “何
をすれば良いか”, “どのようなアプローチがあり得るか”, “そのアプローチの枠組みで何
ができるか” という点についての考察. 特に, 宇宙際 Teichm¨uller 理論の主
80:定理の大雑把 な形の説明. ? §13 から §20: テータ関数に関わる局所理論やその大域化の説明, 特に, 加法的/幾 何学的な対称性が重要な役割を果たす “加法的 Hodge 劇場” の構成の説明. ? §21 から §25: 数体の復元に関わる理論の説明, 特に, 乗法的/数論的な対称性が重 要な役割を果たす “乗法的 Hodge 劇場” の構成の説明. ? §26: 最終的な Hodge 劇場の構成の説明. もう少しだけ理論の詳細に踏み込みましょう. (より詳しくは §27 を参照ください.) §4 から §12 までで説明される “リンクによるアプローチ” によって, ある Diophantus 幾 何学的定理 (§4 の冒頭を参照) を証明するためには, ある適切な固定された数体上の楕円 曲線に対して, (a) 対数殻 (§8 を参照) (b) 楕円曲線の q パラメータの (1 より大きい) ある有理数による巾 (c) 数体 という 3 つの対象の (ある適切な設定における) 多輻的な表示 (§7 を参照) の存在を証明 すれば充分であるということになります. 一方, これらの対象の多輻的な表示を得るため には, “設定の環構造を放棄する” ことによって必然的に発生してしまう不定性 (§10 を参 照) から, 上記の (b) と (c) を防護/隔離しなければなりません. そのために, (b) と (c) を, “ただの数” としてではなく “ある適切な関数の特殊値” として扱う必要が生じます. そのような関数として, (b) に対してテータ関数 (§13 を参照), (c) に対して “κ 系関数” (§24 を参照) が用いられることになります. (§11 の議論を参照.) つづく
81:現代数学の系譜 雑談
20/07/01 18:00:22.29 k+r32g6d.net
>>71
つづき
テータ関数に代入するべき点は, LabCusp±K~= Fl という集合の元たちで自然にラベ
ル付けされます. Fl の各元での特殊値に関する考察から, F×l = Fl \ {0} でラベル付けさ
れた点での特殊値によって (b) が得られ, そして, 0 ∈ Fl でラベル付けされた点での代入
によって, (テータ関数が登場する) “テータモノイド” の分裂が得られることがわかりま
す. また, 0 ∈ Fl での代入によるこの分裂は, 後に, 対数写像を通じて, (b) や (c) に対す
る適切な “入れ物” としての (a) と結びつきます. (§19 や §20 の議論や §8 や §9 の議論
の一部を参照.) そして, 非常に大雑把なレベルでは, §13 から §20 までで構成される “加
法的 Hodge 劇場” (つまり, D-Θ±ell Hodge 劇場や Θ±ell Hodge 劇場) は, テータ関数, そ
の代入点のラベルの管理, 及び, その特殊値 (つまり, (b)) のための “入れ物” (つまり, 最
終的には (a) となるもの) のための設定だと考えられます.
また, (c) の多輻的な表示は, その “加法的 Hodge 劇場” による加法的対称性を用い
たラベルの管理を破壊してしまわないようなラベルの管理のもとで実現されなければなり
ません. その上, “加法的 Hodge 劇場” に現れる大域的な対称性と多輻的に表示されるべ
き (c) の非両立性に, ラベルの管理を対応させなければなりません. (§21 の議論を参照.)
LabCuspK~= F×l/{±1} という集合は, テータ関数の非単数的特殊値に対する自然なラベ
ルの集合であり, この集合に対する乗法的対称性は上述のラベルの管理に関連します. こ
の乗法的/数論的な対称性をもとにした, 数体やその上の数論的直線束たちと, テータ関数
の代入点との間の適切な関連付けが, §21 から §25 までで構成される “乗法的 Hodge 劇
場” という概念によって実現されます. (§18 や §21 の議論を参照.) つまり, 非常に大雑把
なレベルでは, “乗法的 Hodge 劇場” (つまり, D-ΘNF Hodge 劇場や ΘNF Hodge 劇場)
は, (c) の多輻的な表示, 及び, その (c) と (“加法的 Hodge 劇場” におけるテータ関数へ
の “代入” という操作を行うことによって得られる) (a) や (b) との間の関連付けのため
の設定だと考えられます.
つづく
82:現代数学の系譜 雑談
20/07/01 18:00:59.83 k+r32g6d.net
>>72
つづき
加法的/幾何学的な対称性をもとに構成された “加法的 Hodge 劇場” と, 乗法的/数論
的な対称性をもとに構成された “乗法的 Hodge 劇場” を (対称性の出自の観点からは “非
従来的な形” で) 貼り合わせることで得られる概念が, D-Θ±ellNF Hodge 劇場や Θ±ellNF
Hodge 劇場です. (§26 の議論を参照.) そして, 2 つの Θ±ellNF Hodge 劇場を対数リンク
(§9 や §26 を参照) によって結び付けることで, ある単数的乗法的加群を, (a) というコン
パクトな加法的加群に変換することができます. しかも, それは (b) や (c) の “入れ物”
となります. (§8 や §9 の議論を参照.) 一方, “対数写像は設定の環構造に依存する” とい
う事実によって, (単一の) 対数リンクによる (a) という “入れ物” は, Θ リンクと呼ばれ
る設定の環構造と両立しないリンクに対する両立性を持ちません. この問題を回避するた
めに, 対数リンクの無限列から生じる “Frobenius 的対数殻の対数写像による関係の無限
列とそれぞれ Frobenius 的対数殻とエタール的対数殻の間の Kummer 同型” の総体であ
る, 対数 Kummer 対応を考えなければなりません. (§9 や §10 の議論を参照.)
エタール的部分の不定性や対数殻の Kummer 同型に付加されてしまう不定性によっ
て, (a) の多輻的な表示を得るためには, (a) に対するそれぞれ (Ind1), (Ind2) という不定
性 (§10 を参照) を許容しなければなりません. また, 上述の対数 Kummer 対応が上半両
立性を満たすことしか確認することができないという事実によって, (a) の多輻的な表示
を得るためには, (a) に対する (Ind3) という不定性 (§10 を参照) を許容しなければなり
ません. 一方, これまでの説明に登場してきた様々な概念を用いることで, (Ind1), (Ind2),
(Ind3) という比較的 “軽微な不定性” のもと, (ある適切な設定において) (a), (b), (c) を
多輻的に表示することができるのです.
(引用終り)
以上
83:現代数学の系譜 雑談 ◆yH25M02vWFhP
20/07/02 07:16:21 7yuS9dUI.net
>>67
”両立的”:両立的とは、IUTのリンクで結びつけられた 2つの量が、等式または不等式として、左辺と右辺の両方における
というような意味みたいですね(^^;
星裕一の論文
宇宙際 Teichmuller 理論入門 PDF (2019) (Indexあり)URLリンク(repository.kulib.kyoto-u.ac.jp)
(抜粋)
P94
では, どのようにすれば実際の値に対する等式 “deg L = deg L◯xN ” が得られるので
しょうか. ここで再び,deg L (または deg L◯xN ) という値は, qE (または qNE ) なる “生成元” によって定
義された数論的直線束 L (または L◯xN ) の次数である
という事実を思い出しましょう. つまり, 安直リンクの条件に登場する †qNE や ‡qE から
所望の等式に登場する deg L◯xN や deg L を得るためには, “それら生成元から定まる数論
的直線束の次数の計算” を行う必要があります. したがって,
安直リンク (つまり,†qNE → ‡qE �
84:ネる適当な結び付き) †S → ‡S であって, “そ れら生成元から定まる数論的直線束の次数の計算の仕組み” を保つもの が存在すれば, 所望の等式 “deg L = deg L◯xN ” が得られるはずだということです. そし て, 実際にそれが (ある意味で) 実現可能であるという主張が, 非常に大雑把には, 宇宙際 Teichm¨uller 理論の主定理となります: 宇宙際 Teichm¨uller 理論の主定理の雰囲気: (“充分一般的な E/F” に対して) †qNE → ‡ qE なる適当なリンク †S → ‡S が存在して, それは, †qNE → ‡qE の両辺を生成元とする数論的直線束の次数の計算の仕組みと (軽微な不定性を除いて) 両立的となる. つづく
85:現代数学の系譜 雑談 ◆yH25M02vWFhP
20/07/02 07:16:57 7yuS9dUI.net
>>74
つづき
上で例として挙げた †49 → ‡7 なる全単射 †Q~→ ‡Q の設定において, “次数の計算方
法” として, “nZ の次数は log(♯(Z/nZ))” を採用したとしましょう. そして, (この場合に
は実際にはそれは不可能ですが)
(?): この全単射 φ:†Q~→ ‡Q が, 部分集合の間の加群の同型 †Z~→ ‡Z を
導き, かつ, 次数の計算の仕組みとも両立的 ? つまり,
log(♯(†Z/†n†Z)) =log(♯(φ(†Z)/φ(†n)φ(†Z))) ?
となることを証明できたとしましょう. 先述のとおり,
†49 → ‡7 なる全単射 †Q~→ ‡Q の存在だけでは,
“7 = 49” という等式は得られません. しかしながら, (?) によって得られ
る “次数計算の仕組みの両立性” により,
log 49 = log(♯(†Z/†49†Z)) = log(♯(φ(†Z)/φ(†49)φ(†Z))) = log(♯(‡Z/‡7‡Z)) = log 7
という計算を通じて, 所望の等式 “7 = 49” が得られます.
(繰り返しますが, この例の場合には, もちろんそんなことは不可能です.)
(引用終り)
以上
86:現代数学の系譜 雑談 ◆yH25M02vWFhP
20/07/02 07:32:01 7yuS9dUI.net
>>74
”輻的(ふくてき)”:radial
輻は、や【×輻】【×輻射】ですね
星裕一の論文
宇宙際 Teichmuller 理論入門 PDF (2019) (Indexあり)URLリンク(repository.kulib.kyoto-u.ac.jp)
(抜粋)
P102
§ 7. 多輻的アルゴリズム
宇宙際 Teichm¨uller 理論では,
た ふ く て き
多輻的 アルゴリズムという特別な性質を満たすアルゴ
リズムが, 非常に重要な役割を果たします. §8 で行う宇宙際 Teichm¨uller 理論の主定理の
“ミニチュア版” の説明のために, この §7 では, その多輻的アリゴリズムという概念につ
いての簡単な説明を行います. (詳しくは, 例えば, [12] の Example 1.7 から Remark 1.9.2
までの部分を参照ください.)
まず最初に, 次のような設定を考察しましょう.
輻的(ふくてき) データ (radial data ? cf.[12], Example 1.7, (i)) と呼ばれるある数学的対象が与えられているとします. 次
URLリンク(dictionary.goo.ne.jp)
goo辞書
radialの意味 - 小学館 プログレッシブ英和中辞典
[形]
1放射状の,輻射ふくしゃ形の;〈道路が〉(中心部から郊外へ)放射状に走る;半径方向の[に動く]
2《機械》星型構造[放射式]の
URLリンク(dictionary.goo.ne.jp)
goo辞書
や【×輻】 の解説
車輪の軸と外側の輪とを結ぶ、放射状に取り付けられた数多くの細長い棒。スポーク。
ふく‐しゃ【×輻射】 の解説
[名](スル)《「輻」は車輪の「や」で、中心部の轂?(こしき)?から放射状に並んだ木》
1 車の輻?(や)?のように、中央の一点から周囲に射出すること。
2 ⇒放射2
87:132人目の素数さん
20/07/02 16:57:44.05 mg572Jkz.net
ふくま‐でん【伏魔殿】 の解説
1 魔物のひそんでいる殿堂。
2 見かけとは裏腹に、かげでは陰謀
・悪事などが絶えず企 (たくら) まれて
いる所。「政界の伏魔殿」
88:現代数学の系譜 雑談
20/07/03 10:15:27.70 bxcPs0DD.net
ありがとう
89:現代数学の系譜 雑談 ◆yH25M02vWFhP
20/07/03 11:29:35 bxcPs0DD.net
>>67
(引用開始)
・ テータ関数に代入するべき点たちの内, 我々の議論において重要となるものは,
LabCusp±K~= Fl という集合の元たちで自然にラベル付けされる. j ∈ Fl に対して, j でラ
ベル付けされた点でのテータ関数の値は - Fl = {-l*, . . . , 0, . . . , l*} という自然な
同一視のもと - “μ2l・ qj2/2l” の元となる. (§13 や §18 や §19 の議論を参照.)
(引用終り)
ここに
“μ2l・ qj2/2l”
正確には冪で
“μ_2l・ q^(j^2/2l)”
なのですが
q^(j^2/2l)が出てきます
90:132人目の素数さん
20/07/04 12:47:52.74 WE3PWVWX.net
IUT用語集
ことわざ
気違(きちが)いに刃物 の解説
非常に危険であることのたとえ。
91:現代数学の系譜 雑談
20/07/04 22:04:48.06 CndtYA/1.net
転載:圏論をかじっておくと、IUTでも役に立つよ
純粋・応用数学(含むガロア理論)2
スレリンク(math板:655番)
現代数学の系譜 雑談 ◆yH25M02vWFhP 投稿日:2020/07/04(土) ID:CndtYA/1
math jinさんを見て買いました
これいいわ
紙が必要な方は、お早めに
キンドル版もあるみたいだが
なんかね
・圏論と集合論 / 渕野昌:これ結構良い
・ソフトウェアの数理モデルと圏論 / 檜山正幸:檜山正幸さんて、学者さんでもないのに、すごいね~
URLリンク(www.seidosha.co.jp)
青土社
現代思想2020年7月号 特集=圏論の世界
-現代数学の最前線-
【Discussion】
圏論がひらく豊穣なる思考のインタラクション / 加藤文元+西郷甲矢人
【Keynote/Introduction】
圏論の哲学―圏論的構造主義から圏論的統一科学まで / 丸山善宏
圏はどういうものであったか / 小原まり子
【Mathematics/Logic】
圏論とトポロジー / 玉木大
数論幾何と圏論 / 伊藤哲史
圏論的論理学への道案内―論理学と数学をつなぐトポス / 荒武永史
圏論と集合論 / 渕野昌
【Computing/Language】
コンピュータ科学と圏論についての回想と考察 / 三好博之
代数的言語理論の圏論的公理化とガロア理論との統一 / 浦本武雄
ソフトウェアの数理モデルと圏論 / 檜山正幸
【Sciences/Art】
科学の書き言葉としての圏論 / 谷村省吾
普遍性とそのゆらぎ―ネットワークの圏論的諸展開 / 春名太一
圏論の展開?脱圏論への転回 / 郡司ペギオ幸夫
圏の図式からみた芸術の理論―穴・コホモロジー・アブダクション / 久保田晃弘
【Philosophy】
圏論による現象学の深化―射の一元論・モナドロジー・自己 / 田口茂+西郷甲矢人
数学の構造概念はフランスの構造主義にいかなる理解をもたらすか―ブルバキ、カヴァイエス、ロトマン、そして圏論を手引きにして / 中村大介
アラン・バディウの哲学と数学の関係についての批判的考察―「概念の哲学」のポスト・カヴァイエス的展開の諸相という観点から / 近藤和敬
【連載●科学者の散歩道●第六九回】
新たな居場所を求めて―人格教育と科学 / 佐藤文隆
92:132人目の素数さん
20/07/06 17:51:49.38 RV5Tadyo.net
IUT用語集
きべん【×詭弁/×詭×辯】 の解説
1 道理に合わないことを強引に正当化しようとする弁論。こじつけ。
「―を弄 (ろう
93:) する」 2 《sophism》論理学で、外見・形式 をもっともらしく見せかけた虚偽の 論法。
94:132人目の素数さん
20/07/06 19:10:29.27 Rb2ltlm6.net
IUT用語集
査読制度崩壊
IUT論文を査読中。
平成28年6月 京都大学 RIMS 現況調査表 >研究成果の状況
「望月新一による「宇宙際タイヒミューラー理論」の構築とその結果 としての
ABC 予想の解決は、特筆 すべき出来事である。
当該論文は現在査読中であるが」
→査読中にRIMS教授=PRIMS編集員が
IUT論文の結論決定。(査読崩壊)
↓
令和2年4月3日 柏原玉川教授が会見。 ・PRIMSが4篇のIUT論文を受理.
査読中から結論が決まっていた
・柏原特任教授はPRIMS編集員でなく IUT中心の次世代幾何学研究センタ-
特任教授
・玉川教授「お墓へ持っていく」
査読過程は非公開
↓
IUT論文受理後。
京大125周年について
>数論幾何学では、望月新一教授が
2012年に発表した宇宙際タイヒミュラー
理論によって整数論の難問とされてきた「ABC予想」の解明が進んだ
→森重文京大特任教授の依頼より望月
新一教授と議論したショルツの見解.
abc予想の証明へ近づく基本的な
アイデアは見られなかった。
査読中はABC 予想の解決は特筆すべき
出来事
受理後は「ABC予想」の解明が進んだ
証明したといえず解明でごまかすしか
ないインチキです
95:132人目の素数さん
20/07/09 14:10:54 uAS7tbfZ.net
IUT用語集
math jin
0099 132人目の素数さん
2018/01/28 12:56:31
このmath_jinという人、
本当に止めてほしい
>>14
Edward Frenkel? @edfrenkel
返信先: @math_jinさん
Please stop. Otherwise,
I will block you. Thanks.
20:07 - 2018年1月25日
math_jin@math_jin
1月26日 返信先: @edfrenkelさん
I'm sorry. I will stop.
引っ掻き回して迷惑かけている
だけだよ
96:ID:1lEWVa2s
20/07/09 14:51:50 9/rZ0jmm.net
エドワードフランケル出てきたのか。
97:現代数学の系譜 雑談 ◆yH25M02vWFhP
20/07/10 06:10:16 F8J9moxS.net
転載
Inter-universal geometry と ABC予想 (応援スレ) 48
スレリンク(math板:327番)
327 名前:現代数学の系譜 雑談 ◆yH25M02vWFhP [] 投稿日:2020/07/09(木) 13:26:02.95 ID:eFPoTeuu
ちょっと整理しておくと
1.4月3日の柏原&玉川先生の記者会見の前と後
これは全く世界が違う
つまり、2020年4月3日以前のアンチ公開文書は、ほぼ無意味
(∵ 査読が通ったということは、多分複数人いる査読者から見て合格。当然、アンチ公開文書はチェック済み)
2.2020年4月3日以後のアンチ公開文書又は発言で、数学的に意味があるのは、ショルツ氏ただ一人
SS文書のもう一人、Stix氏は沈黙
(∵ 当然のことながら、Stix氏は柏原&玉川先生の記者会見の重みが分かっているから。軽々しい発言はできない。いまIUTを再チェック中と見る)
3.ショルツ氏以外に、IUTの数学の内部に踏み込んで、批判した人は?
答
98:えは、皆無。ショルツ氏のみ 4.ショルツ氏とは、なんだったのか? 答えは、woitブログのDupuy氏とのバトルにある通り。ああ、ショルツ氏の勘違い woitブログで、Dupuy氏にやり込められて、望月IUTの定義が難しいとか、ゲロしてしまった そして、Dupuy氏にやり込められて、あとはメールでとか言って、巣に帰った 5.さて、今後は? IUTの国際会議が4本予定されていたが、新型コロナで中止だが、そろそろ、次の動きが出てくるはず 多分、ズームとか使った、テレワークならぬ、テレ国際会議でもやるのでしょうね (∵ 本来の国際会議のための何本かの論文がどこかに溜まっているはず。それを、使った会議が可能でしょうね) 以上
99:現代数学の系譜 雑談 ◆yH25M02vWFhP
20/07/10 06:11:34 F8J9moxS.net
転載
Inter-universal geometry と ABC予想 (応援スレ) 48
スレリンク(math板:337番)
337 自分:現代数学の系譜 雑談 ◆yH25M02vWFhP [] 投稿日:2020/07/09(木) 22:49:15.99 ID:nrcdZVDh [2/3]
>>326
>『ABC予想入門』には
>楕円曲線y^2=x(x-a)(x+b)を構築し、そのような楕円曲線が「比較的少ない」ことを見出す
>とはっきり書いてあるんだけどね
>それがIUT理論にどうつながるのかが分からん
えーと、まず
その話は、『ABC予想入門』(黒川、小山 PHPサイエンス・ワールド新書 2013)
のP200にある話だよね
そこには、前段があって
a+b=c で互いに素な (a,b,c) という制約があって、
そういう解は意外の少ないとある
つまり、
a^n + b^n = c^n
という方程式で
n >=3 の場合が、フェルマー予想
n=2 の場合が、ピタゴラスで直角三角形
n=1の場合が、ABC予想
で、 n >=3 の場合(フェルマー予想)で
フライの楕円曲線
y^2=x(x-a^n)(x+ b^n)
を考えると、谷山-志村予想から、a^n + b^n = c^n なる解なしが分かる
で、 n =1 の場合(ABC予想)で
フライの楕円曲線の類似
y^2=x(x-a)(x+ b)
を考えると、スピロ予想から、”a+b=c で互いに素なる解に制約あり”(少ない)が分かる
そういうことが
『ABC予想入門』(黒川、小山 PHPサイエンス・ワールド新書 2013)
P197以降に書いてあるみたい
100:132人目の素数さん
20/07/10 08:47:27.67 C1L4PQhw.net
IUT用語集
IUT論文は査読制度が崩壊
p,woitのブログ コメント
W April 19, 2020 at 9:53 am
>Some defenders of IUT like to point
out that Scholze and Stix didn’t give
their precise objection until 2018.
But this phenomenon, given that
it was noticed by most people who
read the paper seriously, should have
been turned up by the refereeing
process before then.
This is, I think, the starting point
for ethical concerns about the refereeing
process.
(For instance, OP’s comment suggests
that the editors could have asked a
series of referees, ignoring those who
have negative commentary, until they
found someone willing to say it is good.)
この記述はIUT論文の査読過程が
査読制度崩壊だった事実>>83
と矛盾しないし補強している。
京大.RIMS文科省は直ちにIUT論文の
査読過程を説明する重大な責任がある。
101:現代数学の系譜 雑談
20/07/10 10:04:47.17 GV/AH8s8.net
>>88
玉川がIUTについて、講義するのは賛�
102:ャだな
103:132人目の素数さん
20/07/10 11:31:01.85 C1L4PQhw.net
IUT論文の査読過程が査読制度崩壊
であった調査について
文科省は関係者だから、
例えば 国会が第三者調査委員会を設置し調査するならwoit他も多分協力するだろう
104:132人目の素数さん
20/07/10 15:12:00.78 e3xNYXlE.net
>>89
なんでIUTを理解してない玉川が講義できるんだ?
IUT理解してたら、記者会見で
「ショルツからの再反論がないから問題ない」とか
「査読過程は墓場まで持っていく」とか
馬鹿丸出しの発言は絶対しない
105:132人目の素数さん
20/07/10 15:33:46.59 d6mIbB45.net
IUT用語集
自業自得
自分の行いの報いが、自分に返って
くること。通例、悪い行為について
いう。
身から出た錆さび。
106:現代数学の系譜 雑談
20/07/11 11:20:38.39 PRf3fy9U.net
>>87
『ABC予想入門』(黒川、小山 PHPサイエンス・ワールド新書 2013)
P201 に引用のスピロ予想関連文献 2つ
(Asterisque 掲載分)
URLリンク(www.numdam.org)
Seminaire sur les pinceaux de courbes elliptiques (a la recherche de ≪Mordell effectif≫)
Spziro Lucien (ed.)
Asterisque, no. 183 (1990) , 146 p.
URLリンク(www.numdam.org)
L. SZPIRO
Discriminant et conducteur des courbes elliptiques
Asterisque, tome 183 (1990), p. 7-18
<URLリンク(www.numdam.org)
URLリンク(www.numdam.org)
D. W. MASSER
Note on a conjecture of Szpiro
Asterisque, tome 183 (1990), p. 19-23
<URLリンク(www.numdam.org)
107:132人目の素数さん
20/07/11 12:58:08 r6mZKT2x.net
UT用語集
狂信者
解説
常軌を逸してあることを信じこむ人。
108:132人目の素数さん
20/07/11 17:58:22.85 jqHQXk3J.net
IUT用語集
隠蔽
解説
[名](スル)人の所在、事の真相など
を故意に覆い隠すこと。
「証拠を隠蔽する」「隠蔽工作」
109:現代数学の系譜 雑談
20/07/11 19:45:09.94 PRf3fy9U.net
楕円曲線、判別式 Δ:=-16(4a2-27b2)
URLリンク(www.suri-joshi.jp)
数理女子
楕円曲線の有理点
楕円曲線と有理点
Q
上定義された楕円曲線とは、
a1, a2,…,a6∈Q
に対し、
y2+a1xy+a3y=x3+a2x2+a4x+a6
で表される曲線です。ただし2次曲線の場合と同様、退化する場合は除いておきます。 この曲線は
y2=x3+ax+b,(a,b∈Q)
という形の標準形へ持って行くことができることが知られています。このとき、 退化するのは「右辺=0」という方程式が重根を持つ場合、
つまり判別式
Δ:=-16(4a2-27b2)が0
となるときです。上の方程式で表される楕円曲線を
Eと書き、 その有理点全体の集合を
E(Q)
と記します。ただし無限遠点を1つ余分に付け加えておきます。 すなわち、
E(Q):={(x,y)∈Q2?y2=x3+ax+b}∪{∞}
とします。
Mordellの定理とBirchとSwinnerton-Dyer予想
以上の考察から、楕円曲線の有理点は二次曲線の場合とは異なり、有理点の数が有限個だったり無限個だったりと複雑な振る舞いをしていることが分かります。 これに関して、以下の大事な結果が知られています。
Mordellの定理
E(Q)
は、有限個の有理点
P1,…,Pn
から上記の操作で生成される。
与えられた楕円曲線の有理点の個数の大きさを予想しているのがBirch and Swinnerton-Dyer予想です。
Birch and Swinnerton-Dyer予想(BSD予想)は、楕円曲線の有理点の大きさが、
L関数と呼ばれる関数で記述されると予想しています。 この予想は、幾何学的な対象の数論的な情報と
L関数の関係を調べるという、整数論と呼ばれる数学分野の中心的なテーマの1つであり、今後取り組むべき重要な7つの問題としてクレイ数学研究所により選ばれたミレニアム懸賞問題の1つでもある、とても大切な問題です。
URLリンク(www.math.kyoto-u.ac.jp)
・「楕円曲線の数論幾何」伊藤哲史先生(京都大学)のスライド
110:現代数学の系譜 雑談
20/07/11 21:43:46.11 PRf3fy9U.net
URLリンク(ja.wikipedia.org)
楕円曲線
実数体上の楕円曲線
実平面上、楕円曲線は次の方程式により定義される平面曲線としてあらわされる。
y^2=x^3+ax+b
ここに a と b は実数である。
楕円曲線の定義は、曲線が非特異であることも要求される。幾何学的には、このことは曲線のグラフが尖点を持たず、自己交叉せず、孤立点ももたないことを意味する。代数的には、非特異とは判別式
Δ =-16(4a^3+27b^2)
と関係している。曲線が非特異であることと、判別式が 0 でないこととは同値である。(係数 -16 は、非特異であることと無関係に見えるが、楕円曲線の高度な研究ではこのようにしたほうが便利である。)
非特異楕円曲線の(実数の)グラフは、判別式が正であれば、二つの曲線の成分を持ち、負であれば、一つの曲線の成分しか持たない。
URLリンク(upload.wikimedia.org)
曲線 y^2 = x^3 - x と y^2 = x^3 - x + 1 のグラフ
例えば、図で示されているグラフでは、図中の左は判別式が 64 であり、図中の右は 判別式が -368 である。
111:現代数学の系譜 雑談
20/07/12 07:45:19.14 /6i4k5qr.net
判別式
URLリンク(www7a.biglobe.ne.jp)
HiroshiのHomePage
URLリンク(www7a.biglobe.ne.jp)
博想録 目次
(関係ないが付録 URLリンク(www7a.biglobe.ne.jp) 5 ガロア
URLリンク(www7a.biglobe.ne.jp) 26 ガロア補足)
URLリンク(www7a.biglobe.ne.jp)
43 フェルマーの最終定理
(抜粋)
1955年9月、日光で開催された代数論的整数論の国際シンポジウム
で、谷山豊は1つのアイデアを提示した。
『すべての楕円曲線はモジュラーである』
という、当時誰も思いつかなかった突拍子もない予想である。数学の言葉で正確に言えば「有理数体の
楕円曲線のゼータ関数は、上半平面上の重み 2 のある保型形式のゼータ関数である」ということになる
“保型形式”とは、一定の変数変換で不変な性質を持つ、複素数を変数とする関数のことで、楕円曲
線の中で保型形式によって表されるものをモジュラー楕円曲線といい、全ての楕円曲線はモジュラー楕
円曲線であるというのが谷山・志村予想である。
「有理数体の楕円曲線のゼータ関数は、上半平面上の重み 2 のある保型形式のゼータ関数である」が
突拍子もないとはどういうことなのか?
そもそも「楕円曲線のゼータ関数」とは、飛び飛びの数(離散数)を扱う整数論の世界から導かれる
ゼータ関数なのであるが、それが無限級数,微積分や連続した数(連続数)を扱う解析学の世界から導
かれる「保型形式のゼータ関数」に一致することを予想したものだからである。
この谷山・志村予想は2,001年には完全に証明されたが、最初は全く異なる分野が地下水脈で繋
がっていたというような驚くべきものだったのである。
(この後の楕円曲線の話が、分り易いが略す。興味のある方は、原文をご参照)
a^n+b^n=c^n となる。
ここで、次のような楕円曲線に着目する。
y^2=x(x-a^n)(x+b^n)・・・⑮
この曲線をフライに敬意を表してフライ曲線と呼んでいる。
つづく
112:現代数学の系譜 雑談
20/07/12 07:45:38.88 /6i4k5qr.net
>>98
つづき
3次方程式 x^3+a x^2+bx+c=0 の3つの根をα,β,γとすると、
この方程式の判別式Dは、
D=〔(β-α)(γ-β)(α-γ)〕^2である。
判別式とはその方程式がどのような根(実根,虚根,重根)
を持つのかを判別するためのもので、
フライ曲線の判別式は
α→0,β→a^n,γ→-b^n から、
D=〔a^n・b^n・(a^n+b^n)〕^2、
a^n+b^n=c^n だから
D=(a^n・b^n・c^n)2=(abc)2^nとなる。
つまり、判別式は自然数abcの 2n 乗である。
このフライ曲線をもとに導かれたゼータ関数は、谷山・志村予想により、重さ2,レベル2の保型形
式になる。そこで、楕円曲線の判別式が2n乗数であるという特殊性を使えば、重さが2でレベルが2
の保型形式が存在するということが証明されてしまう。
しかし、保型形式の理論によれば、そのような関数は存在しないことがわかっているので、
谷山・志村予想が正しければフェルマー予想も正しいことになるのである。
(引用終り)
以上
113:現代数学の系譜 雑談
20/07/12 07:51:57.07 /6i4k5qr.net
>>99
補足
(引用開始)
3次方程式 x^3+a x^2+bx+c=0 の3つの根をα,β,γとすると、
この方程式の判別式Dは、
D=〔(β-α)(γ-β)(α-γ)〕^2である。
判別式とはその方程式がどのような根(実根,虚根,重根)
を持つのかを判別するためのもので、
フライ曲線の判別式は
α→0,β→a^n,γ→-b^n から、
D=〔a^n・b^n・(a^n+b^n)〕^2、
a^n+b^n=c^n だから
D=(a^n・b^n・c^n)^2=(abc)^2^nとなる。
つまり、判別式は自然数abcの 2n 乗である。
(引用終り)
ABC予想では、n=1だから
D=(a・b・c)^2=(abc)2^となる
だから
y^2=x(x-a)(x+b) (楕円曲線)から出発して、
その判別式Dから
a+b=c が出てきて
ABC予想の式 と関連がつく
114:現代数学の系譜 雑談
20/07/12 08:08:40.17 /6i4k5qr.net
>>98
脱線ですが(^^;
URLリンク(www7a.biglobe.ne.jp)
48「マックスウエル」(20130705)
(抜粋)
私は、大学で電気工学を学んだが、中でも電磁気学は本当に難しかった。正直言ってほとんどわからなかったと言ってもいい。
大学の電気工学科に学生が集まらなくなって久しい。電気工学はもう完成された学問であり、この分
野における発展性は望めない。“電気工学科”ではなく、“電気・電子・情報工学科”というような学科
名にしなければ学生が集まらないのだという。
学生が集まらない要因の一つに、電磁気学の難しさがある。
電磁気学が難しい理由は、
クーロンの法則,アンペールの法則,フアラデーの法則など重要な法則が実験事実としてばらばらに
登場し、これらを天下り的に認める必要があるためと思われる。力学のように認めるべき重要な法則が、
万有引力の法則ただ一つだけなら電磁気学はもっとわかりやすくなるだろう。
もう少し具体的にいうと、
1.クーロンの法則だけが基本法則でないこと。
2.「場」という概念が主役に躍り出ること。
3.「場」の微分や積分の数学がややこしいこと。
4.本質的に相対性原理に基づいていること。
5.光の偏光も電子の自己エネルギーも(本当は)量子論で説明しないとわからないこと。
ということではないだろうか?
電磁気学が理解されにくい理由の一つに、教える内容の組み方の問題もあるかもしれない。電気工学
において電磁気学ほど重要なものはないのだから、その骨格を充分理解させ、そこから発展して自分で
理解にたどり着けるようになっていたらより良いと思う。
電磁気学でまず最初に説明すべきことは、この学問の骨組みであり、電磁気学がすべての電気の基本
でいかに大切なものだということではないだろうか。
大学で勉強した電磁気学に対して、最近やっとその重要性を認識しその本質
115:を理解したいと思うよう になった。そして、電磁気学とは結局マックスウエルの方程式を理解し、解けるようにすることなのだ った。 マックスウエルは実験的に電磁誘導を発見したファラデーを讃え 「自分はファラデーの発見を数学の式で表しただけ」と述べ、非 常に謙虚な人として知られている。
116:現代数学の系譜 雑談 ◆yH25M02vWFhP
20/07/12 10:28:21 /6i4k5qr.net
>>98 脱線
「43 フェルマーの最終定理」中のポアンカレ予想の説明がちょっと違うな
誤:
「単連結な 3 次元閉多様体は 3 次元球面 S^3に同相である」ポアンカレ予想
(注1)
これは、位相幾何学(トポロジー)の問題である。
「3 次元閉多様体」とは『3 次元空間において、破れた穴の空いていない複雑な形をした立体』、
「短連結」とは『輪になった紐を縮めていって 1 点にすることができるというような意味』、
「3 次元球面 S^3に同相」とは『3 次元の球そのものである』ということである。
↓
正:
「単連結な 3 次元閉多様体は 3 次元球面 S^3に同相である」ポアンカレ予想
(注1)
これは、位相幾何学(トポロジー)の問題である。
「3 次元閉多様体」とは『4 次元空間において、”破れて穴の空いて”いない 複雑な形をした立体(3次元)』、
「短連結」とは『輪になった紐を縮めていって 1 点にすることができるというような意味』、
「3 次元球面 S^3に同相」とは『4 次元空間中の3次元の球面である』ということである。
(参考)
URLリンク(ja.wikipedia.org)
ポアンカレ予想
(3次元)ポアンカレ予想(ポアンカレよそう、Poincare conjecture)とは、数学の位相幾何学(トポロジー)における定理の一つである。3次元球面の特徴づけを与えるものであり、定理の主張は
単連結な3次元閉多様体は3次元球面 S3 に同相である
URLリンク(ja.wikipedia.org)
三次元球面
三次元(超)球面(さんじげんきゅうめん、英: 3-sphere; 3-球面)あるいはグローム (glome[1]) [注釈 1]は、通常の球面の高次元版である超球面の特別の場合である。四次元ユークリッド空間内の三次元球面は、固定された一点を「中心」として等距離にある点全体の成す点集合として定義することができる。通常の球面(つまり、二次元球面)が三次元の立体である球体の境界を成すのと同様、三次元球面は四次元の立体である四次元球体の境界となる三次元の幾何学的対象である。三次元球面は、三次元多様体の一つの例を与える。
つづく
117:現代数学の系譜 雑談 ◆yH25M02vWFhP
20/07/12 10:28:55 /6i4k5qr.net
>>102
つづき
URLリンク(upload.wikimedia.org)
立体射影した超球面上の緯線 (赤), 経線 (青), 陪経線 (緑). 立体射影は等角写像であるから, これら直線は四次元空間において直交する (交点 (黄)).
URLリンク(upload.wikimedia.org)
三次元球面を三次元空間に直交射影したもの。表面を格子で覆うことで、断面として、三次元空間内の二次元球面の構造が見えているはずである。
URLリンク(ja.wikipedia.org)
位相多様体
5 多様体の分類
5.1 離散空間(0次元多様体)
5.2 曲線(1次元多様体)
5.3 曲面(2次元多様体)
5.4 曲空間(3次元多様体)
5.5 一般の n 次元多様体
曲空間(3次元多様体)
詳細は「3次元多様体(英語版)」を参照
3次元多様体の分類はグレゴリー・ペレルマンによって証明されたサーストンの幾何化予想[要説明]から得られる.
一般の n 次元多様体
「4次元多様体」および「5次元多様体(英語版)」も参照
n が 3 よりも大きいときの n 次元多様体の完全な分類は不可能であることが知られている;少なくとも群論における語の問題(英語版)と同じくらい難しく,それはアルゴリズム的に決定不能(英語版)であることが知られている.実は,与えられた多様体が単連結であるかどうかを決定するアルゴリズムは存在しない.しかしながら,次元 ? 5 の単連結多様体の分類は存在する.
(引用終り)
以上
118:現代数学の系譜 雑談 ◆yH25M02vWFhP
20/07/12 10:31:06 /6i4k5qr.net
>>98 補足
「43 フェルマーの最終定理」
の
P16
(注2)
ガロア理論(要点のみ)
は、良く書けていると思う
全般的に、「43 フェルマーの最終定理」は一読の価値ありと思う(^^
119:132人目の素数さん
20/07/12 14:51:44 JQJ8LacZ.net
>>102
全然ダメな修正したな
>「3 次元閉多様体」とは『4 次元空間において、”破れて穴の空いて”いない 複雑な形をした立体(3次元)』、
「4次元において」は不要
(そもそも全ての3次元多様体が4次元に埋め込めるわけではない
例えば3次元射影空間は4次元空間に埋め込められない)
「”破れて穴の空いて”いない 複雑な形をした3次元空間」のほうがいい
ついでに「短連結」は「単連結」が正しい
120:132人目の素数さん
20/07/12 15:25:58.30 JQJ8LacZ.net
>>104
貴様はこれでも読んでガロア理論は諦めろ
URLリンク(www7a.biglobe.ne.jp)
どうせ貴様にはこれより難しい理解は不可能だ
121:現代数学の系譜 雑談 ◆yH25M02vWFhP
20/07/12 17:13:02 /6i4k5qr.net
>>100
>この方程式の判別式Dは、
>D=〔(β-α)(γ-β)(α-γ)〕^2である。
方程式論をやれば常識だが(いまどきの大学数学科では上滑りかもね)
”(β-α)(γ-β)(α-γ)”は、差積でね
そして、差積の二乗が、判別式になるんだ
(いまの場合、3次多項式で、3次の係数(をaとして) a=1 も効いている)
(参考)
URLリンク(ja.wikipedia.org)
差積
注意
この多項式が項の順番によって変化することに注意すべきである。すなわち、差積は交代式であって対称式でない。[注釈 1]
交代多項式
詳細は「交代式」を参照
差積を定義づける著しい性質はその変数の入れ替えに関する交代性である。つまり、変数 Xi たちのなす順序付けられた n-組に、奇置換を施したときには差積の符号が変わるが、その一方で偶置換を施しても差積の値は変化しない。実は差積は、もっとも単純な交代式(最簡交代式; the basic alternating polynomial) として特徴づけられる(後述)。
判別式
詳細は「判別式」を参照
差積の平方は(等しいものがあるかどうかを判別する)判別式として広く知られる(が、差積自身を判別式とする文献もある[要出典])。
(-1)^2 = 1 に注意すれば、差積の平方である判別式 Δ := Vn^2 は、変数の入れ替えによって変化しない対称式であることは明らかである。すなわち、差積は与えられた変数の集合(非順序組)に対して定まる不変式となる。
URLリンク(ja.wikipedia.org)
判別式
実数係数の代数方程式の実数解の個数は、二次方程式では、判別式の符号が正か零か負かにより2個、1個(重複度2)、0個と判別できるが、三次の場合にはそれぞれ3個、2個(片方は重複度2)あるいは1個(重複度3),1個となる。 このように三次以上では、判別式以外にも指標となる式が必要となる(詳しくは、三次方程式#解の様子、四次方程式#解の様子などを参照)。
"discriminant"(判別式) という用語は1851年にイギリス人数学者ジェームス・ジョセフ・シルベスター (James Joseph Sylvester) によって造り出された[3]。
122:現代数学の系譜 雑談 ◆yH25M02vWFhP
20/07/12 17:13:36 /6i4k5qr.net
>>105
フォローありがとう
123:132人目の素数さん
20/07/12 18:06:28.48 JQJ8LacZ.net
>>108
礼でごまかすな
間違ってましたといって自分の首を刎ねろw
124:現代数学の系譜 雑談
20/07/12 18:29:44.45 /6i4k5qr.net
>>107 補足
分離多項式の場合
"D が P の判別式であれば、X^2 - D が交代群のレゾルベントである"
となります。
つまり、n次 分離多項式の方程式を考えると
方程式のガロア群は、対称群Sn
125:になるが X^2 - D を使って、交代群Anに落とすことができる これは、nが5次以上でも可能です (参考) https://ja.wikipedia.org/wiki/%E5%88%86%E9%9B%A2%E5%A4%9A%E9%A0%85%E5%BC%8F 分離多項式 ガロワ理論における応用 D が P の判別式であれば、X^2 - D が交代群のレゾルベントである。このレゾルベントは P が既約であればつねに分離的(標数は2でないと仮定する)であるが、たいていのレゾルベントはつねに分離的というわけではない。 http://hooktail.sub.jp/algebra/SeparableExtension/ 分離拡大体 [物理のかぎしっぽ]2006/06/25 https://ja.wikibooks.org/wiki/%E4%BB%A3%E6%95%B0%E6%96%B9%E7%A8%8B%E5%BC%8F%E8%AB%96 代数方程式論 目次 1 一次方程式 2 二次方程式 3 三次方程式 4 四次方程式 5 高次方程式
126:現代数学の系譜 雑談 ◆yH25M02vWFhP
20/07/12 19:51:43 /6i4k5qr.net
>>105
>>「3 次元閉多様体」とは『4 次元空間において、”破れて穴の空いて”いない 複雑な形をした立体(3次元)』、
>「4次元において」は不要
「4次元において」は不要と言ってもよ
その定義で、四次元の実座標空間 R^4とか、四元数体とか、それがスタートでしょ
「4次元において」は不要というならば、
おまえの三次元球面の定義を、実座標空間 R^4とか、四元数体とか、使わずに書いて見ろよw(^^;
URLリンク(ja.wikipedia.org)
三次元球面
(抜粋)
四次元ユークリッド空間内の三次元球面は、固定された一点を「中心」として等距離にある点全体の成す点集合として定義することができる。
通常の球面(つまり、二次元球面)が三次元の立体である球体の境界を成すのと同様、三次元球面は四次元の立体である四次元球体の境界となる三次元の幾何学的対象である。
三次元球面は、三次元多様体の一つの例を与える。
定義
四次元の直交座標系を用いるならば、中心 (C0, C1, C2, C3) および半径 r を持つ三次元球面とは、四次元の実座標空間 R^4 において
Σ _{i=0}^{3}(x_{i}-C_{i})^{2}=(x_{0}-C_{0})^{2}+(x_{1}-C_{1})^{2}+(x_{2}-C_{2})^{2}+(x_{3}-C_{3})^{2}=r^{2}}
を満たす点 (x0, x1, x2, x3) 全体の成す集合に等しい。
原点を中心とする半径 1 の三次元球面を三次元単位球面 (unit 3-sphere) と呼び、ふつう S^3 で表す。式で書けば:
S^{3}:={(x_{0},x_{1},x_{2},x_{3})∈{R}^{4}:x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1}.
三次元球面を「ノルム 1」の四元数全体として表す記法では、三次元球面は四元数体におけるベルソル(英語版)(単位四元数)全体の成す集合として同定されている。
平面極座標において単位円が重要であるのとまったく同じに、四元数の乗法の構造を入れた四次元空間内の極表示において三次元球面は重要な役割を果たす。
三次元球面をこのように見る立場は、Georges Lemaitre による楕円型空間の研究の基礎である[2]。
127:132人目の素数さん
20/07/12 21:36:32.80 4BGzcK68.net
IUT用語集
徘徊
精神病・認知症などにより、無意識の
うちに目的なく歩きまわること。
128:現代数学の系譜 雑談
20/07/12 22:49:20.01 /6i4k5qr.net
>>105
>「4次元において」は不要
>(そもそも全ての3次元多様体が4次元に埋め込めるわけではない
> 例えば3次元射影空間は4次元空間に埋め込められない)
ここもなー
3次元射影空間は4次元射影空間に埋め込められるよねw(^^
おまえの言っていることは
「3次元 vs 4次元」の対比の話ではなくて
「(3次元または4次元の) 射影空間 vs ユークリッド空間」の対比の話でしょ
話すり替えているというか
話を取り違えているというかww(^^
129:132人目の素数さん
20/07/13 06:29:24 ys7eXBWa.net
>>111 >>113
わけもわからず埋め込みたがるお馬鹿のセタには困ったもんだねぇ
思考不能で全て感覚するしかない、正真正銘の池沼だな こりゃ
130:現代数学の系譜 雑談
20/07/13 11:56:38.86 P0lE2V+2.net
>>114
ごまかすな
間違ってましたといって自分の首を刎ねろw
(>>109)(^^;
131:132人目の素数さん
20/07/13 12:15:47.00 G2Yds89A.net
IUT用語集
妄想
もうそう
根拠のないありえない内容であるに
もかかわらず確信をもち、事実や
論理によって訂正することができない
主観的な信念。
現実検討能力の障害による精神病の
症状として生じるが、気分障害や
薬物中毒等でもみられる。
内容により誇大妄想・被害妄想など
がある。
132:132人目の素数さん
20/07/13 12:38:00 G2Yds89A.net
IUT用語集
認知症のゴミ集め
収集されるものにあまり価値がない
ように見えても、本人にとっては
大切なもの。
決して周囲が考えるようなゴミでは
ないのです。
集めることには本人なりの理由が
あり目的があります。
そのため勝手に捨てると「盗まれた!」「無くなった!」など気持ち
が追い詰められ「もの盗られ」の
被害に遭ったと感じることも。
133:132人目の素数さん
20/07/13 12:59:06 m0IUWE2E.net
数学掲示板群 URLリンク(x0000.net)
学術の巨大掲示板群 - アルファ・ラボ URLリンク(x0000.net)<)
微分幾何学入門
URLリンク(x0000.net)
134:132人目の素数さん
20/07/13 15:58:59 ys7eXBWa.net
>>115
誤魔化してるのはセタ君、君だよキ・ミ
>>102
>「3次元閉多様体」とは『4 次元空間において、”破れて穴の空いて”いない 複雑な形をした立体(3次元)』
>>105
>「4次元において」は不要
>>111
>「4次元において」は不要というならば、
>おまえの三次元球面の定義を、
>実座標空間 R^4とか、四元数体とか、
>使わずに書いて見ろよw
いつから、「3次元閉多様体」が「3次元球面」のみになったんだいw
ついでにいうと、君、3次元球面を、埋め込みなしに構成できないの?
いや、そりゃマジで頭わりぃなw
2つの3次元空間の貼り付けで、構成できるぞw
(実は任意の次元で、同様に構成できる)
貼りつけ写像も構成できないのか? リーマン球面のときと同じだけどなw
ああ、もしかしてリーマン球面を二つの複素平面の貼り付けで構成する方法も知らんのか?
いやぁ、毛深い獣はなんも知らないんだなw こんなの複素解析やったなら常識だけどなw
工学部の複素解析っていったい何教えてんの?www
#セタはεδの次は、座標系の被覆による多様体の定義にイチャモンつけそうだなw
135:粋蕎 ◆C2UdlLHDRI
20/07/13 18:44:58 hn/nZ6UJ.net
楕円球は2次元閉多様体。真円球を一芯円球、楕円球を二芯円球とすれば三以上整数芯円球は2次元多様体。
三芯円はおにぎりの如し。
>>119
非学者、論に負けず…じゃな。
非学(なる)者(は)、論に負け(ている事を{非学が故に}認識でき)ず。
136:132人目の素数さん
20/07/13 20:54:33 ys7eXBWa.net
>>120
セタも貴様も非学者の負け犬w
137:現代数学の系譜 雑談
20/07/14 00:19:30.45 vq8RyVMN.net
>>102
これ、「43 フェルマーの最終定理」
URLリンク(www7a.biglobe.ne.jp)
中のポアンカレ予想の説明の話だが、もう少し正確に書くと
誤:
「単連結な 3 次元閉多様体は 3 次元球面 S^3に同相である」ポアンカレ予想
(注1)
これは、位相幾何学(トポロジー)の問題である。
「3 次元閉多様体」とは『3 次元空間において、破れた穴の空いていない複雑な形をした立体』、
「短連結」とは『輪になった紐を縮めていって 1 点にすることができるというような意味』、
「3 次元球面 S^3に同相」とは『3 次元の球そのものである』ということである。
↓
正:
「単連結な 3 次元閉多様体は 3 次元球面 S^3に同相である」ポアンカレ予想
(注1)
これは、位相幾何学(トポロジー)の問題である。
「3 次元閉多様体」とは『3 次元以上の空間において、”破れて穴の空いて”いない(閉じた)局所3次元ユークリッド空間と見なせるような図形や空間(位相空間)』
「単連結」とは『輪になった紐を縮めていって 1 点にすることができるというような意味』
「3 次元球面 S^3」とは『4次元ユークリッド空間中の4次元球体の境界を成す3次元の多様体』
「同相」とは、『2つの多様体x,yの間に同相写像が存在する』ということである。
かな(^^;
(参考)
URLリンク(ja.wikipedia.org)
多様体(たようたい、英: manifold, 独: Mannigfaltigkeit)とは、局所的にはユークリッド空間と見なせるような図形や空間(位相空間)のことである。
URLリンク(ja.wikipedia.org)
三次元球面
四次元ユークリッド空間内の三次元球面は、固定された一点を「中心」として等距離にある点全体の成す点集合として定義することができる。
通常の球面(つまり、二次元球面)が三次元の立体である球体の境界を成すのと同様、三次元球面は四次元の立体である四次元球体の境界となる三次元の幾何学的対象である。三次元球面は、三次元多様体の一つの例を与える。
つづく
138:現代数学の系譜 雑談
20/07/14 00:20:49.16 vq8RyVMN.net
>>122
つづき
(山田 修司 教授の”「3次元球面」ってどんな図形?”が分り易いよ(^^)
URLリンク(www.kyoto-su.ac.jp)
ポアンカレ予想から位相幾何学の世界に触れる?4次元空間に浮かぶ3次元球面?
理学部 数理科学科 山田 修司 教授 京都産業大
「3次元球面」ってどんな図形?
URLリンク(kotobank.jp)
コトバンク
同相
連続写像f:X→Y
f^-1も連続であるときfを同相写像(位相写像)といい,このようなfが存在するときXとYは同相(位相同型)であるという。【中岡 稔】。
(引用終り)
以上
139:132人目の素数さん
20/07/14 06:17:50.89 ksbHDIgx.net
>>122
セタ、多様体の定義分かってないだろw
>3 次元以上の空間において、
必要ない つまり多様体に外部は必要なく、
多様体がより高次元の空間に埋め込まれている必要は全く無いw
>「3 次元球面 S^3」とは『4次元ユークリッド空間中の4次元球体の境界を成す3次元の多様体』
おまえ、こんな幼稚な定義しか知らんのか?
そもそもこれだけでは多様体を成すとはいえんぞ
問:4次元ユークリッド空間中の4次元球体の境界が多様体を成すことを証明せよ
蛇足
>多様体(たようたい、英: manifold, 独: Mannigfaltigkeit)とは、局所的にはユークリッド空間と見なせるような図形や空間(位相空間)のことである。
これ、位相多様体の定義な
微分可能多様体の定義は、微積分もよくわかってないセタには到底無理かw
140:現代数学の系譜 雑談 ◆yH25M02vWFhP
20/07/14 07:27:02 vq8RyVMN.net
>>122
脱線ついでに、3次元多様体は、下記ご参照
(日本語のページは、無い)
URLリンク(en.wikipedia.org)
Category:3-manifolds
URLリンク(en.wikipedia.org)
3-manifold
(抜粋)
In mathematics, a 3-manifold is a space that locally looks like Euclidean 3-dimensional space.
A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane to a small enough observer, all 3-manifolds look like our universe does to a small enough observer.
This is made more precise in the definition below.
Contents
1 Introduction
1.1 Definition
1.2 Mathematical theory of 3-manifolds
2 Important examples of 3-manifolds
2.1 Euclidean 3-space
2.2 3-sphere
2.3 Real projective 3-space
2.4 3-torus
2.5 Hyperbolic 3-space
2.6 Poincare dodecahedral space
2.7 Seifert?Weber space
3 Some important classes of 3-manifolds
3.1 Hyperbolic link complements
4 Some important structures on 3-manifolds
4.1 Contact geometry
4.2 Haken manifold
4.4 Heegaard splitting
5 Foundational results
5.1 Moise's theorem
5.2 Prime decomposition theorem
5.3 Kneser?Haken finiteness
5.4 Loop and Sphere theorems
5.5 Annulus and Torus theorems
5.6 JSJ decomposition
5.7 Scott core theorem
5.9 Waldhausen's theorems on topological rigidity
5.10 Waldhausen conjecture on Heegaard splittings
5.11 Smith conjecture
5.13 Thurston's hyperbolic Dehn surgery theorem and the Jorgensen?Thurston theorem
5.14 Thurston's hyperbolization theorem for Haken manifolds
5.17 Poincare conjecture
5.18 Thurston's geometrization conjecture
5.19 Virtually fibered conjecture and Virtually Haken conjecture
5.20 Simple loop conjecture
5.21 Surface subgroup conjecture
6 Important conjectures
6.1 Cabling conjecture
6.2 Lubotzky?Sarnak conjecture