IUTを読むための用語集資料集スレat MATH
IUTを読むための用語集資料集スレ - 暇つぶし2ch40:現代数学の系譜 雑談
20/06/24 23:19:10.61 b5EBywaq.net
メモ
Inter-universal geometry と ABC予想 (応援スレ) 48
スレリンク(math板)
61 名前:現代数学の系譜 雑談 ◆yH25M02vWFhP [] 投稿日:2020/06/18(木) 17:17:22.36 ID:LPUPFt8f [2/4]
>>57 補足
URLリンク(en.wikipedia.org)
Szpiro's conjecture
Modified Szpiro conjecture
The modified Szpiro conjecture states that: given ε > 0,
there exists a constant C(ε) such that for any elliptic curve E defined over Q with invariants c4, c6 and conductor f (using notation from Tate's algorithm),
we have
max{|c_4|^3 , |c_6|^2 } =< C( ε )・ f^{6+ε}
URLリンク(en.wikipedia.org)
Tate's algorithm
In the theory of elliptic curves, Tate's algorithm takes as input an integral model of an elliptic curve E over Q }Q , or more generally an algebraic number field, and a prime or prime ideal p. It returns the exponent fp of p in the conductor of E, the type of reduction at p, the local index
cp=[E(Q p):E^0(Q p)],
where E^0(Q p) is the group of Q p}Q p-points whose reduction mod p is a non-singular point.
Also, the algorithm determines whether or not the given integral model is minimal at p, and, if not, returns an integral model with integral coefficients for which the valuation at p of the discriminant is minimal.
Tate's algorithm also gives the structure of the singular fibers given by the Kodaira symbol or Neron symbol, for which, see elliptic surfaces: in turn this determines the exponent fp of the conductor E.
Tate's algorithm can be greatly simplified if the characteristic of the residue class field is not 2 or 3; in this case the type and c and f can be read off from the valuations of j and Δ (defined below).
Tate's algorithm was introduced by John Tate (1975) as an improvement of the description of the Neron model of an elliptic curve by Neron (1964).
つづく


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch