IUTを読むための用語集資料集スレat MATH
IUTを読むための用語集資料集スレ - 暇つぶし2ch393:現代数学の系譜 雑談
20/08/05 10:38:33.60 R1ZAm1zP.net
>>355
1.コウモリさん、スレ違いだよ。あんたは、素人スレで素人相手に延々と威張りたいんだろう?w
2.細かいことは良いんだ。下記に、超実数と、準超実数と、超現実数とかある。これ以外にもあるかもしれない
 実数Rを拡張して、例えば超実数*Rを構成し、無限小をその内部に含むようにする。こうすると、>>354のように
 ” URLリンク(ja.wikipedia.org)
 0.999... テレンス・タオ  "0.999…" は 1 に「無限に近い」。”
 が正当化できる
3.だが、実数Rの中では、『"0.999…" は 1 に「無限に近い」』は言えない
4.つまりは、21世紀の現代数学では、スタンダードな実数Rと、無限小をその内部に含む超実数*Rと
 二つの立場が可能であって、両立するってことだ
分かったら、巣へお帰り
(参考)
URLリンク(ja.wikipedia.org)
超実数(英: hyperreal number)または超準実数(英: nonstandard reals)と呼ばれる数の体系は無限大量や無限小量を扱う方法の一つである。超実数の全体 *R は実数体 R の拡大体
超実数は(ライプニッツの経験則的な連続の法則(英語版)を厳密なものにした)移行原理(英語版)を満たす。この移行原理が主張するのは、R についての一階述語論理の真なる主張は *R においても真であることである。
1960年代にロビンソンは、超実数体が論理的に無矛盾であることと実数体が論理的に無矛盾であることが同値であることを示した。
超実数の応用、特に解析学における諸問題への移行原理の適用は超準解析と呼ばれる。
URLリンク(ja.wikipedia.org)
準超実数
準超実数 (super-real number, super-real number)
(Dales & Woodin) 超準解析における超実数を一般化するもので、その全体 (super-real field) は超現実数体の部分体を成す。→ 準超実体を参照
URLリンク(ja.wikipedia.org)
超現実数
超現実数(ちょうげんじつすう、英: surreal number)の体系は、全順序付けられた真のクラスとして実数のみならず(任意の正実数よりも絶対値が大きい)無限大および(任意の正実数よりも絶対値が小さい)無限小まで含む。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch