20/06/21 10:14:06 W0WIc7wX.net
>>15
つづき
定理 1 (小平-Nirenberg-Spencer1958/p.910) M をコンパク
トな複素多様体とし,H2(ΘM)=0 と仮定する。このとき,
N 個の parameter t1,・・・,tN に依存したコンパクトな複素
多様体の族 {M(t1, ・・・ , tN )} が存在して,どんな M の微少変
形も {M(t1 ・・・tN )} のなかに同型なものがある。ただし,N
は複素ベクトル空間 H1(ΘM ) の次元,M(0, ・・・ , 0) = M。
∂M(t)/∂t は一次の幾何学的微分です。そして,H2(ΘM) =
0 は Taylor 級数で2次以上の項がないという条件に相当し,定
理 1 は,すべての変形 (幾何学的 Taylor 級数) が H1(ΘM )(一
次の微分) で決定されることを主張しています。
その後のあらゆる種類の変形理論を通じて,この形の定理
は,応用上もっとも重要です。
上の定理は,それらのすべての原形を与えている点で,歴史的にも,重要な意味を持って
います。
この理論は最近,Mordell-Weil 格子の理論 (塩田 1989-1997
なお発展中) の中で,より精密な形で再構成されました。ま
た,Mordell-Weil 格子の理論のひとつの応用として,E8 の
Weyl 群という非常に大きなガロア群 (位数 214 ・ 35 ・ 52 ・ 7) を
持つ代数方程式がすべて決定されています。このほか,多く
の素晴しい結果が得られていますが,この理論の基本的なと
ころでは,楕円曲面の理論 (小平 1963/p.1269) が用いられて
います。(楕円曲面については,浪川氏の解説を参照してくだ
さい。)
つづく