純粋・応用数学(含むガロア理論)2at MATH
純粋・応用数学(含むガロア理論)2 - 暇つぶし2ch718:定式化がある 0.999… と 1 の等価性は、実数の体系(これは解析学ではもっとも一般的に用いられる体系である)に 0 でない無限小が存在しないことと深く関係している。一方、超実数の体系のように 0 でない無限小を含む別の数体系もある そのような体系の大半は、標準的な解釈のもとで式 0.999… の値は 1 に等しくなるが、一部の体系においては記号 "0.999…" に別の解釈を与えて 1 よりも無限小だけ小さいようにすることができる 等式 0.999… = 1 は数学者に長く受け入れられ、一般の数学教育の一部であったにも拘らず、これを十分直観に反する(英語版)ものと見做して、疑念や拒絶反応を示す学徒もいる 超実数 数 0.999… の標準的な定義は 0.9, 0.99, 0.999, … なる数列の極限というものだが、それと異なる定義として例えばテレンス・タオが超極限 (ultralimit) と呼ぶ数列 0.9, 0.99, 0.999, … の超冪構成(英語版)に関する同値類 [(0.9, 0.99, 0.999, …)] は 1 より無限小だけ小さい。 より一般に、階数 H の無限大超自然数の位置に最後の 9 がくる超実数 uH = 0.999…;…999000…, はより厳密な不等式 uH < 1 を満足する。これに応じて、「無限個の 9 のあとに 0 が続く」ことの別解釈を 略 と理解することができる。このように解釈した "0.999…" は 1 に「無限に近い」。 イアン・スチュアートはこの解釈を、「0.999… は 1 よりも『ほんの少しだけ小さい』」という直観を厳密に正当化する「全く合理的な」方法として特徴づけた[23]。 Katz & Katz (2010b) に基づき、R. Ely (2010) もまた学徒のもつ「0.999… < 1 という考えを実数に対する誤った直観とする仮定に疑問を呈し、むしろそれを「超準的」直観と解釈した方が解析学の習得において価値があるのではないかとした




次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch