20/07/03 06:20:50 +ynyFm3O.net
トンデモ🐎🦌野郎曰く
【定理】 オイラーの定数γは有理数
【証明】
γが無理数であったとする。任意の有理数 1/p pは3以上の整数 に対して
|γ-1/p|=| lim_{n→+∞}( 1+1/2+…+1/n-log(n) )-1/p |
=lim_{n→+∞}( 1+1/2+…+1/n-log(n) )-1/p
>( 1+1/2+…+1/p-log(p) )-1/p
=1+1/2+…+1/(p-1)-log(p)
>0、
従って、或る2以上の正整数kが存在して、p≧k のとき |γ-1/p|>( 1+1/2+…+1/p-log(p) )-1/p>1/k≧1/p。
γは無理数だから、0<|γ-q/p|<1/p^2<|γ-1/p| を満たすような既約有理数 q/p p≧2 は無限個存在する。
既約有理数 q/p p≧2 が 0<|γ-q/p|<1/p^2<|γ-1/p| を満たすとする。すると、
三角不等式から、0<|γ-1/p|-|γ-q/p|≦|(q-1)/p|=|q-1|/p となる。
p≧2 から |γ-q/p|<1/p^2≦1/4 だから、γ>1/4 から qが負の整数となることはあり得ない。
従って、p>0 から |q-1|/p=(q-1)/p であって、(q-1)/p>0 から q≧2、
よって q/p≧2/p から、γ-2/p≧γ-q/p>0。故に、M=max(2,k) とおけば、或る2以上の正整数mが存在して、
q/p p≧M 2≦q≦m なる任意の既約有理数 q/p が 0<|γ-q/p|=γ-q/p<1/p^2<|γ-1/p| を満たす。
q=m とすれば、0<γ-m/p、よって、γ<3/5 から m<p・γ<p・3/5=3p/5、故に、m/p<3/5。
m≧2 から、3p/5>2 となって p≧4>10/3。故に、N=max(4,M) とおけば q/p p≧N 2≦q≦m なる
任意の既約有理数 q/p が 0<γ-q/p<1/p^2<|γ-1/p| を満たす。
q=2、p=N とすれば、0<γ-2/N<1/N^2 から、γ<2/N+1/N^2≦2/4+1/4^2=9/16。
しかし、γ<9/16 は γ≧57/100>9/16 なることに反し、矛盾する。
γを無理数としたことで矛盾が導けたから、背理法が使える。故に、背理法を適用すると、γは有理数である。