Inter-universal geometry と ABC予想 (応援スレ) 48at MATH
Inter-universal geometry と ABC予想 (応援スレ) 48 - 暇つぶし2ch371:日高
20/07/10 07:20:44.37 0Ktdx8i5.net
>337
(フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch